Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 1/2016

14.07.2015 | Original Paper

Remanufacturing cathode from end-of-life of lithium-ion secondary batteries by Nd:YAG laser radiation

verfasst von: Wei-wei Liu, Heng Zhang, Li-hong Liu, Xiao-chuan Qing, Zi-jue Tang, Ming-zheng Li, Jin-song Yin, Hong-chao Zhang

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electric vehicle industry has been rapidly developing internationally. Electric vehicle batteries (EVBs) are perceived as a low environmental impact energy storage technology. While the service life of an EVB is relatively long, a significant number of battery packs will reach the end of their service lives eventually. The end-of-life (EOL) EVBs may still have appreciable residual value for remanufacturing and secondary use. Some solid-electrolyte interface (SEI) layers will persist on the surface of electrodes deposit after a period of continuous cycling, causing the battery degradation and failure. An approach to battery end-of-life management was introduced involving remanufacturing of the cathode from EOL lithium-ion battery electrodes, and a recent study on remanufacturing process of the degraded EVBs using pulse laser to radiate SEI on the electrode surface was presented in this paper, here on a laboratory scale. Based on experimental data, the SEI film removal was carried out with laser energy intensity ranging from 0.035 to 0.169 J/mm2. The remanufactured cathodes were characterized through a combination of scanning electron microscopy, Fourier transform infrared spectroscopy, and wavelength dispersive spectrometer, respectively. The experimental results indicated that the remanufacturing treatments were successful in removing the EOL by-products (e.g., SEI films) and upgrading the cathode to its pre-cycling functionality. It is suggested that the fade capacity of a lithium-ion battery can be recovered by using laser radiation method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) Surface characterization of electrodes from high power lithium-ion batteries. J Electrochem Soc 149:A1358–A1369. doi:10.1149/1.1505636 CrossRef Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) Surface characterization of electrodes from high power lithium-ion batteries. J Electrochem Soc 149:A1358–A1369. doi:10.​1149/​1.​1505636 CrossRef
Zurück zum Zitat Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn). J Electrochem Soc 147:1322–1331. doi:10.1149/1.1393357 CrossRef Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) The study of surface phenomena related to electrochemical lithium intercalation into LixMOy host materials (M=Ni, Mn). J Electrochem Soc 147:1322–1331. doi:10.​1149/​1.​1393357 CrossRef
Zurück zum Zitat Brennan JL, Forster RJ (2003) Laser light and electrodes: interaction mechanisms and electroanalytical applications. J Phys Chem B 107:9344–9350. doi:10.1021/jp027189g CrossRef Brennan JL, Forster RJ (2003) Laser light and electrodes: interaction mechanisms and electroanalytical applications. J Phys Chem B 107:9344–9350. doi:10.​1021/​jp027189g CrossRef
Zurück zum Zitat Grimes SM, Donaldson JD, Chaudhary AJ, Hassan M-U (2000) Simultaneous recovery of metals and destruction of organic species: cobalt and phthalic acid. Environ Sci Technol 34:4128–4132. doi:10.1021/es990784k CrossRef Grimes SM, Donaldson JD, Chaudhary AJ, Hassan M-U (2000) Simultaneous recovery of metals and destruction of organic species: cobalt and phthalic acid. Environ Sci Technol 34:4128–4132. doi:10.​1021/​es990784k CrossRef
Zurück zum Zitat Hinoue T, Kuwamoto N, Watanabe I (1999) Voltammetry using an electrode surface continuously renewed by laser ablation and its demonstration on electro-oxidation of L-ascorbic acid. J Electroanal Chem 466:31–37. doi:10.1016/S0022-0728(99)00114-X CrossRef Hinoue T, Kuwamoto N, Watanabe I (1999) Voltammetry using an electrode surface continuously renewed by laser ablation and its demonstration on electro-oxidation of L-ascorbic acid. J Electroanal Chem 466:31–37. doi:10.​1016/​S0022-0728(99)00114-X CrossRef
Zurück zum Zitat Kang DHP, Chen M, Ogunseitan OA (2013) Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ Sci Technol 47:5495–5503. doi:10.1021/es400614y CrossRef Kang DHP, Chen M, Ogunseitan OA (2013) Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste. Environ Sci Technol 47:5495–5503. doi:10.​1021/​es400614y CrossRef
Zurück zum Zitat Kearns A, Fischer C, Watkins KG, Glasmacher M, Kheyrandish H, Brown A, Steen WM, Beahan P (1998) Laser removal of oxides from a copper substrate using Q-switched Nd:yAG radiation at 1064 nm, 532 nm and 266 nm. Appl Surf Sci 127–129:773–780. doi:10.1016/S0169-4332(97)00741-1 CrossRef Kearns A, Fischer C, Watkins KG, Glasmacher M, Kheyrandish H, Brown A, Steen WM, Beahan P (1998) Laser removal of oxides from a copper substrate using Q-switched Nd:yAG radiation at 1064 nm, 532 nm and 266 nm. Appl Surf Sci 127–129:773–780. doi:10.​1016/​S0169-4332(97)00741-1 CrossRef
Zurück zum Zitat Kostecki R, McLarnon F (2002) Degradation of LiNi0.8Co0.2O2 cathode surfaces in high-power lithium-ion batteries. Electrochem Solid-State Lett 5:A164–A166. doi:10.1149/1.1482199 CrossRef Kostecki R, McLarnon F (2002) Degradation of LiNi0.8Co0.2O2 cathode surfaces in high-power lithium-ion batteries. Electrochem Solid-State Lett 5:A164–A166. doi:10.​1149/​1.​1482199 CrossRef
Zurück zum Zitat Kwon K, Kong F, McLarnon F, Evans JW (2002) Characterization of the SEI on a carbon film electrode by combined EQCM and spectroscopic ellipsometry. J Electrochem Soc 150:A229–A233. doi:10.1149/1.1538223 CrossRef Kwon K, Kong F, McLarnon F, Evans JW (2002) Characterization of the SEI on a carbon film electrode by combined EQCM and spectroscopic ellipsometry. J Electrochem Soc 150:A229–A233. doi:10.​1149/​1.​1538223 CrossRef
Zurück zum Zitat Lee SS, Kim TH, Hu SJ (2010) Joining technologies for automotive lithium-ion battery manufacturing—a review. In: Proceedings of the ASME 2010 international manufacturing science and engineering conference, pp 1–9. doi:10.1115/MSEC2010-34168 Lee SS, Kim TH, Hu SJ (2010) Joining technologies for automotive lithium-ion battery manufacturing—a review. In: Proceedings of the ASME 2010 international manufacturing science and engineering conference, pp 1–9. doi:10.​1115/​MSEC2010-34168
Zurück zum Zitat Majumdar D, Majhi BK, Dutta A, Mandal R, Jash T (2015) Study on possible economic and environmental impacts of electric vehicle infrastructure in public road transport in Kolkata. Clean Technol Environ Policy 17:1093–1101. doi:10.1007/s10098-014-0868-7 CrossRef Majumdar D, Majhi BK, Dutta A, Mandal R, Jash T (2015) Study on possible economic and environmental impacts of electric vehicle infrastructure in public road transport in Kolkata. Clean Technol Environ Policy 17:1093–1101. doi:10.​1007/​s10098-014-0868-7 CrossRef
Zurück zum Zitat Marczak J (2001) Surface cleaning of art work by UV, VIS and IR pulse laser radiation. In: Salimbeni R (ed) Laser techniques and systems in art conservation. SPIE, Bellingham, pp 202–209. doi:10.1117/12.445663 CrossRef Marczak J (2001) Surface cleaning of art work by UV, VIS and IR pulse laser radiation. In: Salimbeni R (ed) Laser techniques and systems in art conservation. SPIE, Bellingham, pp 202–209. doi:10.​1117/​12.​445663 CrossRef
Zurück zum Zitat Nagpure SC (2012) Multi-scale Characterization studies of aged Li-ion battery for improved performance. Ohio State University Nagpure SC (2012) Multi-scale Characterization studies of aged Li-ion battery for improved performance. Ohio State University
Zurück zum Zitat Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267. doi:10.1021/jp3118055 CrossRef Nie M, Chalasani D, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Lithium ion battery graphite solid electrolyte interphase revealed by microscopy and spectroscopy. J Phys Chem C 117:1257–1267. doi:10.​1021/​jp3118055 CrossRef
Zurück zum Zitat Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 97–98:52–57. doi:10.1016/S0378-7753(01)00505-5 CrossRef Peled E, Tow DB, Merson A, Gladkich A, Burstein L, Golodnitsky D (2001) Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies. J Power Sources 97–98:52–57. doi:10.​1016/​S0378-7753(01)00505-5 CrossRef
Zurück zum Zitat Poon M, McCreery RL, Engstrom R (1988) Laser activation of carbon electrodes. relationship between laser-induced surface effects and electron transfer activation. Anal Chem 60:1725–1730. doi:10.1021/ac00168a018 CrossRef Poon M, McCreery RL, Engstrom R (1988) Laser activation of carbon electrodes. relationship between laser-induced surface effects and electron transfer activation. Anal Chem 60:1725–1730. doi:10.​1021/​ac00168a018 CrossRef
Zurück zum Zitat Qiu FL, Compton RG, Marken F, Wilkins SJ, Goeting CH, Foord JS (2000) Laser activation voltammetry: selective removal of reduced forms of methyl viologen deposited on glassy carbon and boron-doped diamond electrodes. Anal Chem 72:2362–2370. doi:10.1021/ac991392z CrossRef Qiu FL, Compton RG, Marken F, Wilkins SJ, Goeting CH, Foord JS (2000) Laser activation voltammetry: selective removal of reduced forms of methyl viologen deposited on glassy carbon and boron-doped diamond electrodes. Anal Chem 72:2362–2370. doi:10.​1021/​ac991392z CrossRef
Zurück zum Zitat Ramadass P, Haran B, Gomadam PM, White R, Popov BN (2004) Development of first principles capacity fade model for li-ion cells. J Electrochem Soc 151:A196–A203. doi:10.1149/1.1634273 CrossRef Ramadass P, Haran B, Gomadam PM, White R, Popov BN (2004) Development of first principles capacity fade model for li-ion cells. J Electrochem Soc 151:A196–A203. doi:10.​1149/​1.​1634273 CrossRef
Zurück zum Zitat Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ (2012) Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem 22:12008–12015. doi:10.1039/C2JM31971C CrossRef Schauerman CM, Ganter MJ, Gaustad G, Babbitt CW, Raffaelle RP, Landi BJ (2012) Recycling single-wall carbon nanotube anodes from lithium ion batteries. J Mater Chem 22:12008–12015. doi:10.​1039/​C2JM31971C CrossRef
Zurück zum Zitat Tasaki K, Goldberg A, Lian J-J, Walker M, Timmons A, Harris SJ (2009) Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc 156:A1019–A1027. doi:10.1149/1.3239850 CrossRef Tasaki K, Goldberg A, Lian J-J, Walker M, Timmons A, Harris SJ (2009) Solubility of lithium salts formed on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc 156:A1019–A1027. doi:10.​1149/​1.​3239850 CrossRef
Zurück zum Zitat Teixeira ACR, Silva DLd, Neto LdVBM, Diniz ASAC, Sodré JR (2015) A review on electric vehicles and their interaction with smart grids: the case of Brazil. Clean Technol Environ Policy 17:841–857. doi:10.1007/s10098-014-0865-x CrossRef Teixeira ACR, Silva DLd, Neto LdVBM, Diniz ASAC, Sodré JR (2015) A review on electric vehicles and their interaction with smart grids: the case of Brazil. Clean Technol Environ Policy 17:841–857. doi:10.​1007/​s10098-014-0865-x CrossRef
Zurück zum Zitat USABC (1996) Electric vehicle battery test procedures manual (Revision 2). USABC, Arlington USABC (1996) Electric vehicle battery test procedures manual (Revision 2). USABC, Arlington
Zurück zum Zitat Zhao H, Park S-J, Shi F, Fu Y, Battaglia V, Ross PN, Liu G (2014) Propylene carbonate (pc)-based electrolytes with high coulombic efficiency for lithium-ion batteries. J Electrochem Soc 161:A194–A200. doi:10.1149/2.095401jes CrossRef Zhao H, Park S-J, Shi F, Fu Y, Battaglia V, Ross PN, Liu G (2014) Propylene carbonate (pc)-based electrolytes with high coulombic efficiency for lithium-ion batteries. J Electrochem Soc 161:A194–A200. doi:10.​1149/​2.​095401jes CrossRef
Metadaten
Titel
Remanufacturing cathode from end-of-life of lithium-ion secondary batteries by Nd:YAG laser radiation
verfasst von
Wei-wei Liu
Heng Zhang
Li-hong Liu
Xiao-chuan Qing
Zi-jue Tang
Ming-zheng Li
Jin-song Yin
Hong-chao Zhang
Publikationsdatum
14.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 1/2016
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-015-1010-1

Weitere Artikel der Ausgabe 1/2016

Clean Technologies and Environmental Policy 1/2016 Zur Ausgabe

Awards

Awards