Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 2/2018

22.12.2017 | Original Paper

Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future

verfasst von: Samaneh Babaee, Daniel H. Loughlin

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural gas combined-cycle (NGCC) turbines with carbon capture and storage (CCS) could be an important source of low-carbon electricity in the future. Factors affecting the market competitiveness of NGCC-CCS are examined by conducting a sensitivity analysis using the MARKet ALlocation energy system optimization model. The results indicate that widespread deployment of NGCC-CCS is better suited for a 30% energy system greenhouse gas (GHG) reduction trajectory than for a more stringent 50% reduction trajectory. Methane leakage rate, efficiency penalty, carbon dioxide (CO2) capture rate, and natural gas price are found to be the strongest factors influencing optimal NGCC-CCS deployment, in that order. NGCC plays an important role in meeting mid-term GHG targets across all model runs. A large portion of NGCC capacity is later retrofit with CCS, indicating that NGCC can be both a bridge to a low-carbon future and an integral part of that future. Thus, retrofitability and siting near CO2 storage should be considerations as new NGCC capacity is built. Regional results indicate that NGCC-CCS deployment would be greatest in the West South Central region, followed by the East North Central region. In a business-as-usual scenario, both regions have considerable electricity production from fossil fuels. Conventional coal and gas capacity are displaced under a GHG reduction target, opening the door for NGCC-CCS in these regions. NGCC-CCS market penetration is projected to have a mixed impact on air pollutant emissions and energy-related water consumption. Whether impacts are positive or negative depends on the technologies displaced by NGCC-CCS.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aitken ML, Loughlin DH, Dodder RS, Yelverton WH (2016) Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage. Clean Technol Environ Pol 18(2):573–581CrossRef Aitken ML, Loughlin DH, Dodder RS, Yelverton WH (2016) Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage. Clean Technol Environ Pol 18(2):573–581CrossRef
Zurück zum Zitat Boot-Handford ME, Abanades JC, Anthony EJ et al (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189CrossRef Boot-Handford ME, Abanades JC, Anthony EJ et al (2014) Carbon capture and storage update. Energy Environ Sci 7:130–189CrossRef
Zurück zum Zitat Caulton DR, Shepson PB, Santoro RL et al (2014) Toward a better understanding and quantification of methane emissions from shale gas development. Proc Natl Acad Sci USA 111:6237–6242CrossRef Caulton DR, Shepson PB, Santoro RL et al (2014) Toward a better understanding and quantification of methane emissions from shale gas development. Proc Natl Acad Sci USA 111:6237–6242CrossRef
Zurück zum Zitat Chaudhry R, Fischlein M, Larson J, Hall DM, Peterson TR, Wilson EJ, Stephens JC (2013) Policy stakeholders’ perceptions of carbon capture and storage: A comparison of four U.S. states. J Clean Prod 52:21–32CrossRef Chaudhry R, Fischlein M, Larson J, Hall DM, Peterson TR, Wilson EJ, Stephens JC (2013) Policy stakeholders’ perceptions of carbon capture and storage: A comparison of four U.S. states. J Clean Prod 52:21–32CrossRef
Zurück zum Zitat Cole W, Beppler R, Zinaman O, Logan J (2016) Considering the role of natural gas in the deep decarbonization of the U.S. electricity sector. The Joint Institute for Strategic Energy Analysis, National Renewable Energy Laboratory. http://www.nrel.gov/docs/fy16osti/64654.pdf. Accessed 20 Dec 2016 Cole W, Beppler R, Zinaman O, Logan J (2016) Considering the role of natural gas in the deep decarbonization of the U.S. electricity sector. The Joint Institute for Strategic Energy Analysis, National Renewable Energy Laboratory. http://​www.​nrel.​gov/​docs/​fy16osti/​64654.​pdf. Accessed 20 Dec 2016
Zurück zum Zitat Eide J (2013) Rethinking CCS—strategies for technology development in times of uncertainty. Dissertation, Massachusetts Institute of Technology Eide J (2013) Rethinking CCS—strategies for technology development in times of uncertainty. Dissertation, Massachusetts Institute of Technology
Zurück zum Zitat FederalRegister (2012a) National emission standards for hazardous air pollutants from coal- and oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units; final rule, vol 77, no 32. The U.S. Environmental Protection Agency. https://www.gpo.gov/fdsys/pkg/FR-2012-02-16/pdf/2012-806.pdf. Accessed 20 Dec 2016 FederalRegister (2012a) National emission standards for hazardous air pollutants from coal- and oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units; final rule, vol 77, no 32. The U.S. Environmental Protection Agency. https://​www.​gpo.​gov/​fdsys/​pkg/​FR-2012-02-16/​pdf/​2012-806.​pdf. Accessed 20 Dec 2016
Zurück zum Zitat GAO (2015) Water in the energy sector, reducing freshwater use in hydraulic fracturing and thermoelectric power plant cooling. The United States Government Accountability Office, Center for Science, Technology, and Engineering. http://www.gao.gov/assets/680/671913.pdf. Accessed 20 Dec 2016 GAO (2015) Water in the energy sector, reducing freshwater use in hydraulic fracturing and thermoelectric power plant cooling. The United States Government Accountability Office, Center for Science, Technology, and Engineering. http://​www.​gao.​gov/​assets/​680/​671913.​pdf. Accessed 20 Dec 2016
Zurück zum Zitat Koelbl BS, Wood R, van den Broek MA, Sanders MWJL, Faaij APC, van Vuuren DP (2015) Socio-economic impacts of future electricity generation scenarios in Europe: potential costs and benefits of using CO2 capture and storage (CCS). Int J Greenhouse Gas Control 42:471–484CrossRef Koelbl BS, Wood R, van den Broek MA, Sanders MWJL, Faaij APC, van Vuuren DP (2015) Socio-economic impacts of future electricity generation scenarios in Europe: potential costs and benefits of using CO2 capture and storage (CCS). Int J Greenhouse Gas Control 42:471–484CrossRef
Zurück zum Zitat Kriegler E et al (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim Change 123:353–367CrossRef Kriegler E et al (2014) The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim Change 123:353–367CrossRef
Zurück zum Zitat Lenox C, Kaplan PO (2016) Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions. Energy Econ 60:460–468CrossRef Lenox C, Kaplan PO (2016) Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions. Energy Econ 60:460–468CrossRef
Zurück zum Zitat Logan J, Lopez A, Mai T, Davidson C, Bazilian M, Arent D (2013) Natural gas scenarios in the U.S. power sector. Energy Econ 40:183–195CrossRef Logan J, Lopez A, Mai T, Davidson C, Bazilian M, Arent D (2013) Natural gas scenarios in the U.S. power sector. Energy Econ 40:183–195CrossRef
Zurück zum Zitat Loughlin DH, Macpherson AJ, Kaufman KR, Keaveny BN (2017) Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching. J Air Waste Manage 67(10):1115–1125CrossRef Loughlin DH, Macpherson AJ, Kaufman KR, Keaveny BN (2017) Marginal abatement cost curve for NOx incorporating controls, renewable electricity, energy efficiency and fuel switching. J Air Waste Manage 67(10):1115–1125CrossRef
Zurück zum Zitat Lu X, Salovaara J, McElroy MB (2012) Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector. Environ Sci Technol 46:3014–3021CrossRef Lu X, Salovaara J, McElroy MB (2012) Implications of the recent reductions in natural gas prices for emissions of CO2 from the US power sector. Environ Sci Technol 46:3014–3021CrossRef
Zurück zum Zitat Macknick J, Newmark R, Heath G, Hallett K (2011) A review of operational water consumption and withdrawal factors for electricity generating technologies. National Renewable Energy Laboratory, U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy. http://www.nrel.gov/docs/fy11osti/50900.pdf. Accessed 20 Dec 2016 Macknick J, Newmark R, Heath G, Hallett K (2011) A review of operational water consumption and withdrawal factors for electricity generating technologies. National Renewable Energy Laboratory, U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy. http://​www.​nrel.​gov/​docs/​fy11osti/​50900.​pdf. Accessed 20 Dec 2016
Zurück zum Zitat McJeon HC, Clarke L, Kyle P, Wise M, Hackbarth A, Bryant BP, Lempert RJ (2011) Technology interactions among low-carbon energy technologies: what can we learn from a large number of scenarios? Energy Econ 33:619–631CrossRef McJeon HC, Clarke L, Kyle P, Wise M, Hackbarth A, Bryant BP, Lempert RJ (2011) Technology interactions among low-carbon energy technologies: what can we learn from a large number of scenarios? Energy Econ 33:619–631CrossRef
Zurück zum Zitat McJeon H et al (2014) Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514:482–485CrossRef McJeon H et al (2014) Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514:482–485CrossRef
Zurück zum Zitat Nichols C, Victor N (2015) Examining the relationship between shale gas production and carbon capture and storage under CO2 taxes based on the social cost of carbon. Energy Strategy Rev 7:39–54CrossRef Nichols C, Victor N (2015) Examining the relationship between shale gas production and carbon capture and storage under CO2 taxes based on the social cost of carbon. Energy Strategy Rev 7:39–54CrossRef
Zurück zum Zitat Nyberg M (2014) Thermal efficiency of gas-fired generation in California: 2014 update. Report # CEC-200-2014-005, California Energy Commission, Sacramento, CA Nyberg M (2014) Thermal efficiency of gas-fired generation in California: 2014 update. Report # CEC-200-2014-005, California Energy Commission, Sacramento, CA
Zurück zum Zitat Peischl J, Ryerson T, Aikin K (2015) Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J Geophys Res Atmos 120:2119–2139CrossRef Peischl J, Ryerson T, Aikin K (2015) Quantifying atmospheric methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production regions. J Geophys Res Atmos 120:2119–2139CrossRef
Zurück zum Zitat Ran L, Loughlin DH, Yang D, Adelman Z, Baek BH, Nolte CG (2015) ESP v2.0: enhanced method for exploring emission impacts of future scenarios in the United States – addressing spatial allocation. Geosci Model Dev 8(6):1775–1787CrossRef Ran L, Loughlin DH, Yang D, Adelman Z, Baek BH, Nolte CG (2015) ESP v2.0: enhanced method for exploring emission impacts of future scenarios in the United States – addressing spatial allocation. Geosci Model Dev 8(6):1775–1787CrossRef
Zurück zum Zitat Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust Sci 38:630–671CrossRef Rubin ES, Mantripragada H, Marks A, Versteeg P, Kitchin J (2012) The outlook for improved carbon capture technology. Prog Energy Combust Sci 38:630–671CrossRef
Zurück zum Zitat Williams J, DeBenedictis A, Ghanadan R, Mahone A, Moore J, Morrow WR III, Price S, Torn MS (2012) The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335:53–59CrossRef Williams J, DeBenedictis A, Ghanadan R, Mahone A, Moore J, Morrow WR III, Price S, Torn MS (2012) The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335:53–59CrossRef
Zurück zum Zitat Wright E, Kanudia A (2014) Low carbon standard and transmission investment analysis in the new multi-region US power sector model FACETS. Energy Econ 46:136–150CrossRef Wright E, Kanudia A (2014) Low carbon standard and transmission investment analysis in the new multi-region US power sector model FACETS. Energy Econ 46:136–150CrossRef
Zurück zum Zitat Yang C, Yeh S, Zakerinia S, Ramea K, McCollum D (2015) Achieving california’s 80% greenhouse gas reduction target in 2050: technology, policy and scenario analysis using CA-TIMES energy economic systems model. Energy Policy 77:118–130CrossRef Yang C, Yeh S, Zakerinia S, Ramea K, McCollum D (2015) Achieving california’s 80% greenhouse gas reduction target in 2050: technology, policy and scenario analysis using CA-TIMES energy economic systems model. Energy Policy 77:118–130CrossRef
Metadaten
Titel
Exploring the role of natural gas power plants with carbon capture and storage as a bridge to a low-carbon future
verfasst von
Samaneh Babaee
Daniel H. Loughlin
Publikationsdatum
22.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 2/2018
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-017-1479-x

Weitere Artikel der Ausgabe 2/2018

Clean Technologies and Environmental Policy 2/2018 Zur Ausgabe