Skip to main content

Advertisement

Log in

Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In the present paper, we investigate the behaviour of different dental materials under laser irradiation. We have used e.max Ceram, e.max ZirCAD, and e.max Press dental ceramics and glass ionomer cement Ketac Cem in the present study. The dental ceramics were prepared in the form of samples with thickness of 0.5–2 mm. We used two lasers [solid-state laser (Er:YAG, Fidelis III+, Fotona) and an 810- nm diode laser (FOX, A.R.C)] for the transillumination of ceramic samples. It has been shown that the laser energy transmitted through the ceramic material decreases to 30–40 % of the original values along with an increase in the thickness of the irradiated sample. Pigmented ceramic samples show more laser energy loss compared to the samples containing no pigment. We investigated the temperature evolution in composite sandwiched ceramic/cement samples under laser treatment. The increase in the irradiation time and laser power led to a temperature increase of up to 80 °C. The surfaces of irradiated ceramic samples were examined with X-ray photoelectron spectroscopy to evaluate changes in chemical composition, such as a decrease in the C signal, accompanied by a strong increase in the Zr peak for the Er:YAG laser, while the 810-nm diode laser showed no change in the ratio of elements on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pjetursson BE, Brägger U, Lang NP, Zwahlen M (2007) Comparison of survival and complication rates of tooth-supported fixed dental prostheses (FDPs) and implant-supported FDPs and single crowns (SCs). Clin Oral Implants 18(3):97–113

    Article  Google Scholar 

  2. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY (2003) Clinical complications with implants and implant prostheses. J Prosthet Dent 90(2):121–132

    Article  PubMed  Google Scholar 

  3. Apel C, Franzen R, Meister J, Sarrafzadegan- H, Gutknecht N (2002) Influence of the pulse length of an erbium YAG laser system on the ablation threshold of human dental enamel. Lasers Med Sci 17:253–257

    Article  CAS  PubMed  Google Scholar 

  4. Gutknecht N, Franzen R, Lampert F (2002) Finite element study on thermal effects in root canals during laser treatment with a surface-absorbed laser. Lasers Med Sci 17:137–144

    Article  Google Scholar 

  5. Sgolastra F, Petrucci A, Gatto R, Monaco A (2011) Effectiveness of laser in dentinal hypersensitivity treatment: a systematic review. J Endod 37(3):297–303

    Article  PubMed  Google Scholar 

  6. Gutknecht N, Moritz A, Dercks HW, Lampert F (1997) Treatment of hypersensitive teeth using neodymium:yttrium–aluminium–garnet lasers: a comparison of the use of various settings in an in vivo study. J Clin Laser Med Surg 15:171–174

    CAS  PubMed  Google Scholar 

  7. Shigetani Y, Okamoto A, Abu-Bakr N, Iwaku M (2002) A study of cavity preparation by Er: YAG laser—observation of hard tooth structure by laser scanning microscope and examination of the time necessary to remove caries. Dent Mater J 21(1):20–31

    Article  PubMed  Google Scholar 

  8. Gutknecht N, Franzen R, Schippers M, Lampert F (2004) Bactericidal effect of a 980-nm diode laser in the root canal wall dentin of bovine teeth. J Clin Laser Med Surg 22(1):9–13, PMID: 15117481

    Article  CAS  PubMed  Google Scholar 

  9. Boj JR, Poirier C, Hernandez M, Espassa E, Espanya A (2011) Review: laser soft tissue treatments for paediatric dental patients. Eur Arch Paediatr Dent 12(2):100–105

    Article  CAS  PubMed  Google Scholar 

  10. Gimbel CB (2000) Hard tissue laser procedures. Dent Clin N Am 44(4):931–953

    CAS  PubMed  Google Scholar 

  11. Martinez-Insua A, Dominguez LS, Rivera FG, Santana-Penin UA (2000) Differences in bonding to acid-etched or Er:YAG-laser-treated enamel and dentine surfaces. J Prosthet Dent 84:280–288

    Article  CAS  PubMed  Google Scholar 

  12. Strobl A, Gutknecht N, Franzen R, Hilgers RD, Lampert F, Meister J (2010) Laser-assisted in-office bleaching using a neodymium:yttrium–aluminum–garnet laser: an in vivo study. Laser Med Sci 25:503–509

    Article  Google Scholar 

  13. Franzen R, Gutknecht N, Falken S, Heussen N, Meister J (2011) Bactericidal effect of a Nd:YAG laser on Enterococcus faecalis at pulse durations of 15 and 25 ms in dentine depths of 500 and 1.000 μm. Lasers MedSci 26:95–101

    Article  Google Scholar 

  14. Gutknecht, N (2007) Proceedings of the 1st International Workshop of Evidence Based Dentistry on Lasers in Dentistry, Quintessenz, London, Berlin, Chicago. ISBN 978-1-85097-167-2

  15. Meister J, Franzen R (2007) Dental laser systems. Part 1: erbium laser. Laser Zahnheilkunde 2(07):131–134

    Google Scholar 

  16. Meister J, Franzen R (2007) Dental laser systems. Part 2: diode laser. Laser Zahnheilkunde 3(07):185–189

    Google Scholar 

  17. Noda M, Okuda Y, Tsuruki J, Minesaki Y, Takenouchi Y, Ban S (2010) Surface damages of zirconia by Nd:YAG dental laser irradiation. Dent Mater J 29(5):536–541

    Article  CAS  PubMed  Google Scholar 

  18. Lin M, Xu F, Lu TJ, Bai BF (2010) A review of heat transfer in human tooth—experimental characterization and mathematical modeling. Dent Mater 26:501–513

    Article  PubMed  Google Scholar 

  19. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  CAS  PubMed  Google Scholar 

  20. Machida T, Wilder-Smith P, Arrastia AM, Liaw LH, Berns MW (1995) Root canal preparation using the second harmonic KTP:YAG laser: a thermographic and scanning electron microscopic study. J Endod 21(2):88–91

    Article  CAS  PubMed  Google Scholar 

  21. Nammour S, Kowaly K, Powell GL, Van Reck J, Rocca JP (2004) External temperature during KTP–Nd:YAG laser irradiation in root canals: an in vitro study. Lasers Med Sci 19(1):27–32

    Article  CAS  PubMed  Google Scholar 

  22. Grunder U, Strub JR (1986) Problem of the temperature increase during preparation of bone with rotational instruments—a literature survey. Schweiz Monatsschr Zahnmed 96:956–959

    CAS  PubMed  Google Scholar 

  23. Yang B, Wolfart S, Scharnberg M, Ludwig K, Adelung R, Kern M (2007) Influence of contamination on zirconia ceramic bonding. J Dent Res 86(8):749–753

    Article  CAS  PubMed  Google Scholar 

  24. Wagner CD, Zatko DA, Reymond RH (1980) Use of the oxygen KLL Auger libes in identification of surface chemical states by electron spectroscopy for chemical analysis. Anal Chem 52(9):1445–1451

    Article  CAS  Google Scholar 

  25. Hofmann S, Sanz JM (1982/1983) J Trace and Microprobe Techniques 1(3):213

    Google Scholar 

  26. Zinelis S, Thomas A, Syres K, Silikas N, Eliades G (2010) Surface characterization of zirconia dental implants. Dent Mater 26:295–305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors thank Andrej Ruben (Clinic of Prosthodontics, Implantology and Biomaterials, University Hospital Aachen, RWTH Aachen University) for preparation of ceramic and ceramic/cement samples. The help of Dr. Robert Kaufman and Joachim Roes (DWI RWTH Aachen University) with XPS measurements is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Gutknecht.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 67 kb)

ESM 2

(JPEG 136 kb)

ESM 3

(JPEG 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pich, O., Franzen, R., Gutknecht, N. et al. Laser treatment of dental ceramic/cement layers: transmitted energy, temperature effects and surface characterisation. Lasers Med Sci 30, 591–597 (2015). https://doi.org/10.1007/s10103-013-1340-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1340-3

Keywords

Navigation