Skip to main content

Advertisement

Log in

Effect of low-level laser therapy on the gene expression of collagen and vascular endothelial growth factor in a culture of fibroblast cells in mice

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser therapy treatment (LLLT) is widely used in rehabilitation clinics with the aim of accelerating the process of tissue repair; however, the molecular bases of the effect of LLLT have not been fully established. The aim of the present study was to evaluate the influence of the exposure of different doses of LLLT on the expression of collagen genes type I alpha 1 (COL1α1) and vascular endothelial growth factor (VEGF) in the fibroblast cells of mice (L929) cultivated in vitro. Fibroblast cells were irradiated with a Gallium-Arsenide laser (904 nm) every 24 h for 2 consecutive days, stored in an oven at 37 °C, with 5 % CO2 and divided into 3 groups: G1—control group, G2—irradiated at 2 J/cm2, and G3—irradiated at 3 J/cm2. After irradiation, the total RNA was extracted and used in the complementary DNA (cDNA) synthesis. The gene expression was analyzed by real-time polymerase chain reaction. The cells irradiated in G2 exhibited a statistically significant growth of 1.78 in the expression of the messenger RNA (mRNA) of the COL1α1 gene (p = 0.036) in comparison with G1 and G3. As for the VEGF gene, an increase in expression was observed in the two irradiated groups in comparison with the control group. There was an increase in expression in G2 of 2.054 and G3 of 2.562 (p = 0.037) for this gene. LLLT (904 nm) had an influence on the expression of the genes COL1α1 (2 J/cm2) and VEGF (2 e 3 J/cm2) in a culture of the fibroblast cells of mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen CH, Wang YH, Lee CL, Chen JK, Huang MH (2009) Low-level laser irradiation promotes cell proliferation and mRNA expression of type I collagen and decorin in porcine achilles tendon fibroblasts in vitro. J Orthop Res 28(5):646–650

    Article  Google Scholar 

  2. Busnardo VL, Biondo-Simões MLP (2010) Effects of low-level helium-neon laser on induced wound healing in rats. Rev Bras Fisioter 14(1):45–51

    Article  PubMed  Google Scholar 

  3. Pinfildi CE, Liebano RE, Hochman BS, Ferreira LM (2005) Helium–neon laser in viability of random skin flap in rats. Lasers Surg Med 37:74–77

    Article  PubMed  Google Scholar 

  4. Costa MS, Pinfildi CE, Gomes HC, Liebano RE, Arias VE, Silveira TS, Ferreira LM (2010) Effect of low-level laser therapy with output power of 30 mW and 60 mW in the viability of a random skin flap. Photomed Laser Surg 28(1):57–61

    Article  PubMed  Google Scholar 

  5. Rocha Júnior AM, Oliveira RG, Farias RE, Andrade LCF, Aarestrup FM (2006) Modulação da proliferação fibroblástica e da resposta inflamatória pela terapia a laser de baixa intensidade no processo de reparo tecidual. An Bras Dermatol 81(2):150–56

    Article  Google Scholar 

  6. Szymanska J, Goralczyk K, Klawe JJ, Lukowicz M, Zalewski P, Newton JL, Gryko L, Zajac A, Rosc D (2013) Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. J Physiol Pharmacol 64(3):387–391

    CAS  PubMed  Google Scholar 

  7. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 16(4):1–16

    CAS  Google Scholar 

  8. Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2012) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28(2):367–374

    Article  Google Scholar 

  9. Frozanfar A, Ramezani M, Rahpeyma A, Khajehahmadi S, Arbab HR (2013) The effects of low level laser therapy on the expression of collagen type i gene and proliferation of human gingival fibroblasts (Hgf3-Pi 53): in vitro study. Iran J Basic Med Sci 16(10):1071–74

    PubMed Central  PubMed  Google Scholar 

  10. Cury V, Moretti AIS, Assis L, Bossini P, Crusca JS, Benatti Neto C, Fangel R, Souza HP, Hamblin MR, Parizotto NA (2013) Low level laser therapy increases angiogenesis in a model of ischemic skin flap in rats mediated by VEGF, HIF-1a and MMP-2. J Photochem Photobiol B Biol 125:164–170

    Article  CAS  Google Scholar 

  11. Lopes FRP, Lisboa BC, Frattini F, Almeida FM, Tomaz MA, Matsumoto PK, Langone F, Lora S, Melo PA, Borojevic R, Han SW, Martinez AMB (2011) Enhancement of sciatic nerve regeneration after vascular endothelial growth factor (VEGF) gene therapy. Neuropathol Appl Neurobiol 37(6):600–12

    Article  Google Scholar 

  12. Rodrigues NC, Brunelli R, Araújo HSS, Parizotto NA, Renno ACM (2013) Low-level laser therapy (LLLT) (660 nm) alters gene expression during muscle healing in rats. J Photochem Photobiol B Biol 120:29–35

    Article  CAS  Google Scholar 

  13. Al-Watban FA, Zhang XY (1997) Comparison of wound healing process using argon and krypton lasers. J Clin Laser Med Surg 15:209–215

    CAS  PubMed  Google Scholar 

  14. Yu W, Naim JO, Lanzafame RJ (1997) Effects of photostimulation on wound healing in diabetic mice. Laser Surg Med 20:56–63

    Article  CAS  Google Scholar 

  15. Bisht D, Mehrotra R, Singh PA, Atri SC, Kumar A (1999) Effect of helium–neon laser on wound healing. Indian J Exp Biol 37(2):187–189

    CAS  PubMed  Google Scholar 

  16. Wei Y, Naim JO, Lanzafame RJ (1994) The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59:167–170

    Article  Google Scholar 

  17. Crisan B, Soritau O, Baciut M, Campian R, Crisan L, Baciut G (2013) Influence of three laser wavelengths on human fibroblasts cell culture. Lasers Med Sci 28(2):457–463

    Article  PubMed  Google Scholar 

  18. Bradley MO, Bhuyan B, Francis MC, Langenbach R, Peterson A, Huberman E (1981) Mutagenesis by chemical agents in V79 Chinese hamster cells: a review and analysis of the literature. A report of the Gene-Tox Program. Mutat Res 87(2):81–142

    Article  CAS  PubMed  Google Scholar 

  19. Doyle A, Griffiths JB (1999) Cell and tissue culture. Laboratory procedures in biotechnology. Wiley, New York

    Google Scholar 

  20. Zucco F, De Angelis I, Testai E, Stammati A (2004) Toxicology investigations with cell culture systems: 20 years after. Toxicol In Vitro 18(2):153–163

    Article  CAS  PubMed  Google Scholar 

  21. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26(17):3503–3509

    Article  CAS  PubMed  Google Scholar 

  22. Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d’Hoedt B (2002) Low level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30(5):365–369

    Article  PubMed  Google Scholar 

  23. Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci 21(2):86–89

    Article  PubMed  Google Scholar 

  24. Vargas DM, Audi L, Carrascosa A (1997) Peptides derived from collagen: new biochemical markers of bone metabolism]. Rev Assoc Med Bras 43(4):367–370

    Article  CAS  PubMed  Google Scholar 

  25. Kummar V, Abbas AK, Fausto N, Aster JC (2010) PATOLOGIA: Bases Patológicas das Doenças. Elsevier, Rio de Janeiro

    Google Scholar 

  26. Balasubramanian P, Prabhakaran MP, Sireesha M, Ramakrishna S (2013) Collagen in human tissues: structure, function, and biomedical implications from a tissue engineering perspective. Adv Polym Sci 251:173–206

    Article  CAS  Google Scholar 

  27. Yu EM, Liu BH, Wang GJ, Yu DG, Xie J, Xia Y, Gong WB, Wang HH, Li ZF, Wei N (2013) Molecular cloning of type I collagen cDNA and nutritional regulation of type I collagen mRNA expression in grass carp. J Anim Physiol Anim Nutr. doi:10.1111/jpn.12132

    Google Scholar 

  28. Mognato M, Squizzato F, Facchin F, Zaghetto L, Corti L (2004) Cell growth modulation of human cells irradiated in vitro with low-level laser therapy. Photomed Laser Surg 22:523–526

    Article  PubMed  Google Scholar 

  29. Pires-Oliveira DAA, Oliveira RF, Machado AH, Zangaro RA, Pacheco-Soares C (2010) Laser biomodulation on L 929 cell culture. Photomed Laser Surg 28(2):167–171

    Article  PubMed  Google Scholar 

  30. Pereira AN, Eduardo CP, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267

    Article  PubMed  Google Scholar 

  31. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):2003–2007

    Article  Google Scholar 

  32. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in realtime PCR. Nucleic Acids Res 30(9):01–10

    Article  Google Scholar 

  33. Piva JAAC, Abreu EMC, Silva VS, Nicolau RA (2011) Ação da terapia com laser de baixa potência nas fases iniciais do reparo tecidual: princípios básicos. An Bras Dermatol 86(5):947–954

    Article  PubMed  Google Scholar 

  34. Hakki SS, Bozkurt SB (2012) Effects of different setting of diode laser on the mRNA expression of growth factors and type I collagen of human gingival fibroblasts. Lasers Med Sci 27(2):325–331

    Article  PubMed  Google Scholar 

  35. Houreld NN, Ayuk SM, Abrahamse H (2014) Expression of genes in normal fibroblast cells (WS1) in response to irradiation at 660 nm. J Photochem Photobiol B 130:146–52

    Article  CAS  PubMed  Google Scholar 

  36. Leão JC, Issa JPM, Pitol DL, Rizzi EC, Dias FJ, Siéssere S, Regalo SCH, Iyomasa MM (2011) Histomorphological and angiogenic analyzes of skin epithelium after low laser irradiation in hairless mice. Anat Rec 294:1592–1600

    Article  Google Scholar 

  37. Hakkinen L, Uitto VJ, Larjava H (2000) Cell biology of gingival wound healing. Periodontol 24:127–152

    Article  CAS  Google Scholar 

  38. Allendorf JD, Bessler M, Huang J, Kayton ML, Laird D, Nowygrod R, Treat MR (1997) Helium-neon laser irradiation at fluence of 1, 2, and 4 J/cm2 failed to accelerate wound healing as assessed by both wound contracture rate and tensile strength. Lasers Surg Med 20(3):340–345

    Article  CAS  PubMed  Google Scholar 

  39. Saperia D, Glassberg E, Lyons RF, Abergel RP, Baneux P, Castel JC, Dwyer RM, Uitto J (1986) Demonstration of elevated type I and III procollagen mRNA level in cutaneous wound treated with helium-neon laser. Proposed mechanism for enhanced wound healing. Biochem Biophs Res Commum 138(3):1123–1128

    Article  CAS  Google Scholar 

Download references

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Poli-Frederico.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martignago, C.C.S., Oliveira, R.F., Pires-Oliveira, D.A.A. et al. Effect of low-level laser therapy on the gene expression of collagen and vascular endothelial growth factor in a culture of fibroblast cells in mice. Lasers Med Sci 30, 203–208 (2015). https://doi.org/10.1007/s10103-014-1644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1644-y

Keywords

Navigation