Skip to main content

Advertisement

Log in

Effects of red and near-infrared LED light therapy on full-thickness skin graft in rats

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of the present study was to evaluate the in vivo response of different wavelengths (red and near-infrared) of light-emitting diode (LED) on full-thickness skin grafts (FTSG) in rats. Thirty rats were randomly allocated into three experimental groups: control group (C); red LED treated group (R); and near-infrared LED group (NIR). Skin grafts were irradiated daily for ten consecutive days, starting immediately after the surgery using a red (630 nm) or near-infrared (850 nm) LED. The results showed that the red wavelength LED significantly enhanced the skin graft score in relation to the NIR group and increased transforming growth factor beta (TGF-β) protein expression and density of collagen fibers compared with the other experimental groups. These results suggest that the red wavelength LED was efficient to improve the dermo-epidermal junction and modulate the expression proteins related to tissue repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oganesyan G, Jarell AD, Srivastava M, Jiang B (2013) Efficacy and complication rates of full-thickness skin graft repair of lower extremity wounds after mohs micrographic surgery. Dermatologic Surg 39:1334–1339. https://doi.org/10.1111/dsu.12254

    Article  CAS  Google Scholar 

  2. Audrain H, Bray A, De Berker D (2015) Full-thickness skin grafts for lower leg defects: an effective repair option. Dermatol Surg 41:493–498. https://doi.org/10.1097/DSS.0000000000000330

    Article  CAS  PubMed  Google Scholar 

  3. Politis MJ, Zanakis MF (1989) Enhanced survival of full-thickness skin grafts following the application of DC electrical fields. Plast Reconstr Surg 84:267–272

    Article  CAS  Google Scholar 

  4. Wang J, Hao H, Huang H et al (2016) The effect of adipose-derived stem cells on full-thickness skin grafts. Biomed Res Int 2016. https://doi.org/10.1155/2016/1464725

    Google Scholar 

  5. Stanley BJ, Pitt KA, Weder CD et al (2013) Effects of negative pressure wound therapy on healing of free full-thickness skin grafts in dogs. Vet Surg 42:511–522. https://doi.org/10.1111/j.1532-950X.2013.12005.x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Waris T, Rechardt L, Kyosola K (1983) Reinnervation of human skin grafts: a histocemical. Sutdy Plast Reconstr Surg 72:439–445

    Article  CAS  Google Scholar 

  7. Zhang F, Lineaweaver W (2011) Acute and sustained effects of vascular endothelial growth factor on survival of flaps and skin grafts. Ann Plast Surg 66:581–582. https://doi.org/10.1097/SAP.0b013e3182057376

    Article  CAS  PubMed  Google Scholar 

  8. Fang T, Lineaweaver WC, Chen MB et al (2014) Effects of vascular endothelial growth factor on survival of surgical flaps: a review of experimental studies. J Reconstr Microsurg 30:1–14. https://doi.org/10.1055/s-0033-1345429

    Article  CAS  PubMed  Google Scholar 

  9. Vaghardoost R, Momeni M, Kazemikhoo N et al (2018) Effect of low-level laser therapy on the healing process of donor site in patients with grade 3 burn ulcer after skin graft surgery ( a randomized clinical trial ). Lasers Med Sci 43:603–607. https://doi.org/10.1007/s10103-017-2430-4

    Article  Google Scholar 

  10. Dahmardehei M, Kazemikhoo N, Vaghardoost R et al (2016) Effects of low level laser therapy on the prognosis of split-thickness skin graft in type 3 burn of diabetic patients: a case series. Lasers Med Sci 31:497–502. https://doi.org/10.1007/s10103-016-1896-9

    Article  PubMed  Google Scholar 

  11. Anders JJ (2015) Low-level light/laser therapy versus photobiomodulation. Therapy 1(33):183–184. https://doi.org/10.1089/pho.2015.9848

    Article  Google Scholar 

  12. Avci P, Gupta A, Sadasivam M et al (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg 32:41–52

    PubMed  PubMed Central  Google Scholar 

  13. Prindeze NJ, Moffatt LT, Shupp JW (2012) Mechanisms of action for light therapy: a review of molecular interactions. Exp Biol Med 237:1241–1248. https://doi.org/10.1258/ebm.2012.012180

    Article  CAS  Google Scholar 

  14. Gupta A, Dai T, Hamblin MR (2014) Effect of red and near-infrared wavelengths on low-level laser ( light ) therapy-induced healing of partial-thickness dermal abrasion in mice. 257–265. https://doi.org/10.1007/s10103-013-1319-0

    Article  Google Scholar 

  15. Vladimirov YA, Osipov AN, Klebanov GI (2004) Photobiological principles of therapeutic applications of laser radiation. Biochem 69:81–90. https://doi.org/10.1023/B:BIRY.0000016356.93968.7e

    Article  CAS  Google Scholar 

  16. De Freitas LF, Hamblin MR (2017) Proposed mechanisms of photobiomodulation or low-level light. Therapy:1–37. https://doi.org/10.1109/JSTQE.2016.2561201.Proposed

  17. Karu TI, Kolyakov SF (2005) Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 23:355–361. https://doi.org/10.1089/pho.2005.23.355

    Article  CAS  PubMed  Google Scholar 

  18. Em M, Chaves A Piancastelli CC effects of low-power light therapy on wound healing, pp 616–623. https://doi.org/10.1590/abd1806-4841.20142519

    Article  Google Scholar 

  19. Heiskanen V, Hamblin MR (2018) Photobiomodulation: lasers: vs. light emitting diodes? Photochem Photobiol Sci 17:1003–1017. https://doi.org/10.1039/c8pp00176f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richter GT, Fan CY, Ozgursoy O, Mccoy J, Vural E (2006) Effect of vascular endothelial growth factor on skin graft survival in Sprague-Dawley rats. Arch Otolaryngol Head Neck Surg 132:637–641

    Article  Google Scholar 

  21. Martignago CCS, Tim CR, Assis L et al (2018) Comparison of two different laser photobiomodulation protocols on the viability of random skin flap in rats. Lasers Med Sci. https://doi.org/10.1007/s10103-018-2694-3

    Article  Google Scholar 

  22. Başaran Ö, Özdemir H, Kut A et al (2006) Effects of different preservation solutions on skin graft epidermal cell viability and graft performance in a rat model. Burns 32:423–429. https://doi.org/10.1016/j.burns.2005.11.010

    Article  PubMed  Google Scholar 

  23. Zografou A, Tsigris C, Papadopoulos O et al (2011) Improvement of skin-graft survival after autologous transplantation of adipose-derived stem cells in rats. J Plast Reconstr Aesthet Surg 64:1647–1656. https://doi.org/10.1016/j.bjps.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  24. Nishioka MA, Pinfildi CE, Sheliga TR et al (2012) LED (660 nm) and laser (670 nm) use on skin flap viability: angiogenesis and mast cells on transition line. Lasers Med Sci 27:1045–1050. https://doi.org/10.1007/s10103-011-1042-7

    Article  PubMed  Google Scholar 

  25. Park IS, Chung PS, Ahn JC (2015) Enhancement of ischemic wound healing by spheroid grafting of human adipose-derived stem cells treated with low-level light irradiation. PLoS One 10:1–16. https://doi.org/10.1371/journal.pone.0122776

    Article  CAS  Google Scholar 

  26. Fujihara Y, Koyama H, Nishiyama N et al (2005) Gene transfer of bFGF to recipient bed improves survival of ischemic skin flap. Br J Plast Surg 58:511–517. https://doi.org/10.1016/j.bjps.2004.12.028

    Article  CAS  PubMed  Google Scholar 

  27. Fayazzadeh E, Ahmadi SH, Rabbani S et al (2012) A comparative study of recombinant human basic fibroblast growth factor (bFGF) and erythropoietin (EPO) in prevention of skin flap ischemic necrosis in rats. Arch Iran Med 15:553–556 https://doi.org/012159/AIM.008

    CAS  PubMed  Google Scholar 

  28. Yu W, Naim JO, Lanzafame RJ (1994) The effect of laser irradation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59:167–170. https://doi.org/10.1111/j.1751-1097.1994.tb05017.x

    Article  CAS  PubMed  Google Scholar 

  29. Penn JW, Grobbelaar AO, Rolfe KJ (2012) TGF-β family in wound healing. Int J Burn Trauma 2:18–28

    CAS  Google Scholar 

  30. Kasuya A, Tokura Y (2014) Attempts to accelerate wound healing. J Dermatol Sci 76:169–172. https://doi.org/10.1016/j.jdermsci.2014.11.001

    Article  PubMed  Google Scholar 

  31. He T, Quan T, Shao Y et al (2014) Oxidative exposure impairs TGF-β pathway via reduction of type II receptor and SMAD3 in human skin fibroblasts. Age (Omaha) 36:1079–1094. https://doi.org/10.1007/s11357-014-9623-6

    Article  CAS  Google Scholar 

  32. Nogueira VC, Coelho NPM de F, de BTL et al (2014) Biomodulation effects of LED and therapeutic ultrasound combined with semipermeable dressing in the repair process of cutaneous lesions in rats. Acta Cir Bras 29:588–595. https://doi.org/10.1590/S0102-8650201400150006

    Article  PubMed  Google Scholar 

  33. Safavi SM, Kazemi B, Esmaeili M et al (2008) Effects of low-level He-Ne laser irradiation on the gene expression of IL-1β, TNF-α, IFN-γ, TGF-β, bFGF, and PDGF in rat’s gingiva. Lasers Med Sci 23:331–335. https://doi.org/10.1007/s10103-007-0491-5

    Article  PubMed  Google Scholar 

  34. de Sousa APC, Santos JN, dos Reis JA et al (2010) Effect of LED phototherapy of three distinct wavelengths on fibroblasts on wound healing: a histological study in a rodent model. Photomed Laser Surg 28:547–552. https://doi.org/10.1089/pho.2009.2605

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the Brazilian funding agency FAPESP project # 2015/13501-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cintia Cristina Santi Martignago.

Ethics declarations

The present study was approved by the Animal Care Committee guidelines at the Federal University of São Carlos (protocol 8577280716) and it was conducted according to the Guiding Principles for the Use of Laboratory Animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martignago, C.C.S., Tim, C.R., Assis, L. et al. Effects of red and near-infrared LED light therapy on full-thickness skin graft in rats. Lasers Med Sci 35, 157–164 (2020). https://doi.org/10.1007/s10103-019-02812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02812-6

Keywords

Navigation