Skip to main content

Advertisement

Log in

Improved semidefinite bounding procedure for solving Max-Cut problems to optimality

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present an improved algorithm for finding exact solutions to Max-Cut and the related binary quadratic programming problem, both classic problems of combinatorial optimization. The algorithm uses a branch-(and-cut-)and-bound paradigm, using standard valid inequalities and nonstandard semidefinite bounds. More specifically, we add a quadratic regularization term to the strengthened semidefinite relaxation in order to use a quasi-Newton method to compute the bounds. The ratio of the tightness of the bounds to the time required to compute them depends on two real parameters; we show how adjusting these parameters and the set of strengthening inequalities gives us a very efficient bounding procedure. Embedding our bounding procedure in a generic branch-and-bound platform, we get a competitive algorithm: extensive experiments show that our algorithm dominates the best existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  Google Scholar 

  2. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, vol.166. Springer, USA (2012)

  3. Anjos, M.F., Lasserre, J.B.: Introduction to semidefinite, conic and polynomial optimization. In: Anjos, M.F., Lasserre, J.B (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, vol.166, pp. 1–22. Springer, USA (2012)

  4. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 problem. Math. Program. 109, 55–68 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  6. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, Berlin (2000)

  7. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  8. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cadoux, F., Lemaréchal, C.: Reflections on generating (disjunctive) cuts. EURO J. Comput. Optim. (Submitted, 2012)

  10. Cun, B.L., Roucairol, C., The PNN Team: BOB: A Unified Platform for Implementing Branch-and-Bound Like Algorithms. Technical Report 95/16, University of Versailles Saint-Quentin-en-Yvelines (1995).

  11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  14. Helmberg, C., Rendl, F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes. Math. Program. 82, 291–315 (1998)

    MATH  MathSciNet  Google Scholar 

  15. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer, Heidelberg (Two volumes) (1993)

  16. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations (Proceedings of Symposium, IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, 1972), pp. 85–103. Plenum, New York (1972)

  17. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite branch-and-bound algorithm for \(k\)-cluster (Submitted, 2012). Available online as preprint hal-00717212

  18. Laurent, M., Poljak, S.: Gap inequalities for the cut polytope. Eur. J. Comb. 17(2–3), 233–254 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lemaréchal, C., Oustry, F.: Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization. Rapport de Recherche 3710, INRIA (1999)

  20. Malick, J.: Spherical constraint in Boolean quadratic programming. J. Glob. Optim. 39(4) (2007)

  21. Malick, J., Roupin, F.: On the bridge between combinatorial optimization and nonlinear optimization: a family of semidefinite bounds leading to Newton-like methods. Math. Program. B (to appear, 2012). Available online as preprint hal-00662367

  22. Malick, J., Roupin, F.: Solving k-cluster problems to optimality using adjustable semidefinite programming bounds. Math. Program. B Special Issue Mixed Integer Nonlinear Program (to appear, 2012)

  23. Morales, J.L., Nocedal, J.: Remark on “Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans. Math. Softw. 38(1), 1–4 (2011)

    Article  MathSciNet  Google Scholar 

  24. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  25. Palagi, L., Piccialli, V., Rendl, F., Rinaldi, G., Wiegele, A.: Computational approaches to Max-Cut. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research& Management Science, vol.166, pp. 821–847. Springer, USA (2012)

  26. Pardalos, P., Rodgers, G.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 134–144 (1990)

    Article  MathSciNet  Google Scholar 

  27. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Glob. Optim. 1, 15–22 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  28. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. Glob. Optim. 7, 51–73 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  29. Rendl, F., Rinaldi, G., Wiegele, A.: Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations. Math. Program. 121, 307–335 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wiegele, A.: Nonlinear Optimization Techniques Applied to Combinatorial Optimization Problems. Ph.D. thesis, Alpen-Adria-Universität Klagenfurt (2006)

  31. Wiegele, A.: Biq Mac Library–A collection of Max-Cut and quadratic 0–1 programming instances of medium size. Technical report, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria (2007)

  32. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We are grateful to Angelika Wiegele for the discussions we have had and for providing us with a copy of the Biq Mac solver for our numerical comparison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Krislock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krislock, N., Malick, J. & Roupin, F. Improved semidefinite bounding procedure for solving Max-Cut problems to optimality. Math. Program. 143, 61–86 (2014). https://doi.org/10.1007/s10107-012-0594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0594-z

Keywords

Mathematics Subject Classification

Navigation