Skip to main content
Log in

A doubly stabilized bundle method for nonsmooth convex optimization

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We propose a bundle method for minimizing nonsmooth convex functions that combines both the level and the proximal stabilizations. Most bundle algorithms use a cutting-plane model of the objective function to formulate a subproblem whose solution gives the next iterate. Proximal bundle methods employ the model in the objective function of the subproblem, while level methods put the model in the subproblem’s constraints. The proposed algorithm defines new iterates by solving a subproblem that employs the model in both the objective function and in the constraints. One advantage when compared to the proximal approach is that the level set constraint provides a certain Lagrange multiplier, which is used to update the proximal parameter in a novel manner. We also show that in the case of inexact function and subgradient evaluations, no additional procedure needs to be performed by our variant to deal with inexactness (as opposed to the proximal bundle methods that require special modifications). Numerical experiments on almost 1,000 instances of different types of problems are presented. Our experiments show that the doubly stabilized bundle method inherits useful features of the level and the proximal versions, and compares favorably to both of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Astorino, A., Frangioni, A., Gaudioso, M., Gorgone, E.: Piecewise-quadratic approximations in convex numerical optimization. SIAM J. Optim. 21(4), 1418–1438 (2011). doi:10.1137/100817930

    Article  MathSciNet  MATH  Google Scholar 

  2. Bello-Cruz, J.Y., de Oliveria, W.: Level bundle-like algorithms for convex optimization. J. Glob. Optim. 59(4), 787–809 (2014). doi:10.1007/s10898-013-0096-4

    Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Non-euclidean restricted memory level method for large-scale convex optimization. Math. Program. 102, 407–456 (2005). doi:10.1007/s10107-004-0553-4. http://dl.acm.org/citation.cfm?id=1057781.1057789

  4. Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.: Numerical Optimization. Theoretical and Practical Aspects. Universitext. Springer, Berlin (2006). Second edition, xiv+490 pp

  5. Brannlund, U., Kiwiel, K.C., Lindberg, P.O.: A descent proximal level bundle method for convex nondifferentiable optimization. Oper. Res. Lett. 17(3), 121–126 (1995). doi:10.1016/0167-6377(94)00056-C. http://www.sciencedirect.com/science/article/pii/016763779400056C

  6. Correa, R., Lemaréchal, C.: Convergence of some algorithms for convex minimization. Math. Program. 62(2), 261–275 (1993)

    Article  MATH  Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002). doi:10.1007/s101070100263

    Article  MathSciNet  MATH  Google Scholar 

  8. de Oliveira, W.: Combining level and proximal bundle methods for convex optimization in energy problems. In: 3rd International Conference on Engineering Optimization—EngOpt, Rio de Janeiro, Mathematical Optimization Techniques, vol. 404, pp. 1–10 (2012). http://www.engopt.org/authors/404.html

  9. de Oliveira, W., Sagastizábal, C.: Level bundle methods for oracles with on-demand accuracy. Optim. Methods Softw. 29(6), 1180–1209 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Oliveira, W., Sagastizábal, C., Scheimberg, S.: Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21(2), 517–544 (2011). doi:10.1137/100808289

    Article  MathSciNet  MATH  Google Scholar 

  11. de Oliveira, W., Sagastizábal, C., Lemaréchal, C.: Convex bundle methods in depth: a unified analysis for inexact oracles. Math. Program. 148(1–2), 241–277 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fábián, C.: Bundle-type methods for inexact data. Cent. Eur. J. Oper. Res. 8, 35–55 (2000)

    MATH  Google Scholar 

  13. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117–156 (2002). doi:10.1137/S1052623498342186

    Article  MathSciNet  MATH  Google Scholar 

  14. Frangioni, A., Gorgone, E.: Bundle methods for sum-functions with ‘easy’ components: applications to multicommodity network design. Math. Program. 145(1–2), 133–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Goffin, J.L., Haurie, A., Vial, J.P.: Decomposition and nondifferentiable optimization with the projective algorithm. Manag. Sci. 38(2), 284–302 (1992). http://EconPapers.repec.org/RePEc:inm:ormnsc:v:38:y:1992:i:2:p:284-302

  16. Goffin, J.L., Vial, J.P.: Interior points methods for nondifferentiable optimization. In: Proceedings of the Operations Research 1997 (Jena), pp. 35–49 (1998). http://EconPapers.repec.org/RePEc:fth:ehecge:97.24

  17. Hintermüller, M.: A proximal bundle method based on approximate subgradients. Comput. Optim. Appl. 20, 245–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. No. 305–306 in Grund. der math. Wiss (two volumes). Springer, Berlin (1993)

  19. Kiwiel, K.C.: Proximity control in bundle methods for convex nondiferentiable minimization. Math. Program. 46, 105–122 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kiwiel, K.C.: Proximal level bubdle methods for convex nondiferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69(1), 89–109 (1995). doi:10.1007/BF01585554

    MathSciNet  MATH  Google Scholar 

  21. Kiwiel, K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Optim. 16(4), 1007–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lemaréchal, C., Nemirovskii, A., Nesterov, Y.: New variants of bundle methods. Math. Program. 69(1), 111–147 (1995). doi:10.1007/BF01585555

    Article  MATH  Google Scholar 

  23. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Program. 76, 393–410 (1997)

    Article  MATH  Google Scholar 

  24. Sagastizábal, C.: Composite proximal bundle method. Math. Program. 140(1), 189–233 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sagastizábal, C., Solodov, M.: An infeasible bundle method for nonsmooth convex constrained optimization without a penalty function or a filter. SIAM J. Optim. 16(1), 146–169 (2005). doi:10.1137/040603875

    Article  MathSciNet  MATH  Google Scholar 

  26. Solodov, M.: On approximations with finite precision in bundle methods for nonsmooth optimization. J. Optim. Theory Appl. 119(1), 151–165 (2003). doi:10.1023/B:JOTA.0000005046.70410.02

    Article  MathSciNet  MATH  Google Scholar 

  27. van Ackooij, W., de Oliveira, W.: Level bundle methods for constrained convex optimization with various oracles. Comput. Optim. Appl. 57(3), 555–597 (2014). doi:10.1007/s10589-013-9610-3

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge helpful comments of Claudia Sagastizábal. The authors also thank the anonymous referees for constructive suggestions that considerably improved the original version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Welington de Oliveira.

Additional information

Mikhail Solodov is supported in part by CNPq Grant 302637/2011-7, by PRONEX-Optimization and by FAPERJ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, W., Solodov, M. A doubly stabilized bundle method for nonsmooth convex optimization. Math. Program. 156, 125–159 (2016). https://doi.org/10.1007/s10107-015-0873-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0873-6

Keywords

Mathematics Subject Classification

Navigation