Skip to main content
Log in

Monotone operator theory in convex optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Several aspects of the interplay between monotone operator theory and convex optimization are presented. The crucial role played by monotone operators in the analysis and the numerical solution of convex minimization problems is emphasized. We review the properties of subdifferentials as maximally monotone operators and, in tandem, investigate those of proximity operators as resolvents. In particular, we study new transformations which map proximity operators to proximity operators, and establish connections with self-dual classes of firmly nonexpansive operators. In addition, new insights and developments are proposed on the algorithmic front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alghamdi, M.A., Alotaibi, A., Combettes, P.L., Shahzad, N.: A primal-dual method of partial inverses for composite inclusions. Optim. Lett. 8, 2271–2284 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Asplund, E.: A monotone convergence theorem for sequences of nonlinear mappings. In: Browder, F.E. (ed.) Nonlinear Functional Analysis, Part 1, pp. 1–9. AMS, Providence, RI (1970)

    Google Scholar 

  3. Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Peypouquet, J., Redont, P.: Backward-forward algorithms for structured monotone inclusions in Hilbert spaces. J. Math. Anal. Appl. 457, 1095–1117 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Baillon, J.-B., Combettes, P.L., Cominetti, R.: There is no variational characterization of the cycles in the method of periodic projections. J. Funct. Anal. 262, 400–408 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et \(n\)-cycliquement monotones. Israel J. Math. 26, 137–150 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Bartz, S., Bauschke, H.H., Borwein, J.M., Reich, S., Wang, X.: Fitzpatrick functions, cyclic monotonicity and Rockafellar’s antiderivative. Nonlinear Anal. 66, 1198–1223 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Bauschke, H.H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42, 330–348 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Bauschke, H.H., Bui, M.N., Wang, X.: Projecting onto the intersection of a cone and a sphere. https://arxiv.org/pdf/1708.00585 (2017)

  10. Bauschke, H.H., Bui, M.N., Wang, X.: On the sum of projectors onto convex sets. https://arxiv.org/pdf/1802.02287 (2018)

  11. Bauschke, H.H., Combettes, P.L.: A Dykstra-like algorithm for two monotone operators. Pac. J. Optim. 4, 383–391 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Bauschke, H.H., Combettes, P.L.: The Baillon–Haddad theorem revisited. J. Convex Anal. 17, 781–787 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd edn. Springer, New York (2017)

    MATH  Google Scholar 

  14. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and counterexamples. Nonlinear Anal. 56, 715–738 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Bauschke, H.H., Moffat, S.M., Wang, X.: Firmly nonexpansive mappings and maximally monotone operators: correspondence and duality. Set Valued Var. Anal. 20, 131–153 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Bauschke, H.H., Schaad, J., Wang, X.: On Douglas–Rachford operators that fail to be proximal mappings. Math. Program. B168, 55–61 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Bauschke, H.H., Wang, X., Yao, L.: On Borwein–Wiersma decompositions of monotone linear relations. SIAM J. Optim. 20, 2636–2652 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Bellman, R., Kalaba, R.E., Lockett, J.A.: Numerical Inversion of the Laplace Transform: Applications to Biology, Economics Engineering, and Physics. Elsevier, New York (1966)

    MATH  Google Scholar 

  20. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Borwein, J.M.: Asplund decompositions of monotone operators. ESAIM Proc. 17, 19–25 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Borwein, J.M., Wiersma, H.: Asplund decomposition of monotone operators. SIAM J. Optim. 18, 946–960 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Boţ, R.I., Hendrich, C.: Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization. J. Math. Imaging Vis. 49, 551–568 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Boyle, J.P., Dykstra, R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. Lect. Notes Stat. 37, 28–47 (1986)

    MathSciNet  MATH  Google Scholar 

  25. Brézis, H.: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland/Elsevier, New York (1973)

    MATH  Google Scholar 

  26. Brézis, H., Lions, P.L.: Produits infinis de résolvantes. Israel J. Math. 29, 329–345 (1978)

    MathSciNet  MATH  Google Scholar 

  27. Briceño-Arias, L.M., Combettes, P.L.: Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery. Numer. Math. Theory Methods Appl. 2, 485–508 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Briceño-Arias, L.M., Combettes, P.L.: A monotone+skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Browder, F.E.: The solvability of non-linear functional equations. Duke Math. J. 30, 557–566 (1963)

    MathSciNet  MATH  Google Scholar 

  30. Browder, F.E.: Variational boundary value problems for quasi-linear elliptic equations of arbitrary order. Proc. Natl. Acad. Sci. USA 50, 31–37 (1963)

    MathSciNet  MATH  Google Scholar 

  31. Browder, F.E.: Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces. Trans. Am. Math. Soc. 118, 338–351 (1965)

    MathSciNet  MATH  Google Scholar 

  32. Browder, F.E.: Convergence theorems for sequences of nonlinear operators in Banach spaces. Math. Z. 100, 201–225 (1967)

    MathSciNet  MATH  Google Scholar 

  33. Byrne, C.L.: Iterative Optimization in Inverse Problems. CRC Press, Boca Raton (2014)

    MATH  Google Scholar 

  34. Chambolle, A., Dossal, C.: On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm”. J. Optim. Theory Appl. 166, 968–982 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Chaux, C., El-Gheche, M., Farah, J., Pesquet, J.-C., Pesquet-Popescu, B.: A parallel proximal splitting method for disparity estimation from multicomponent images under illumination variation. J. Math. Imaging Vis. 47, 167–178 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64, 81–101 (1994)

    MathSciNet  MATH  Google Scholar 

  38. Combettes, P.L.: Inconsistent signal feasibility problems: Least-squares solutions in a product space. IEEE Trans. Signal Process. 42, 2955–2966 (1994)

    Google Scholar 

  39. Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Combettes, P.L., Condat, L., Pesquet, J.-C., Vũ, B.C.: A forward-backward view of some primal-dual optimization methods in image recovery. In: Proceedings of IEEE International Conference on Image Processing, Paris, France, Oct. 27–30, pp. 4141–4145 (2014)

  42. Combettes, P.L., Dũng, Dinh, Vũ, B.C.: Dualization of signal recovery problems. Set Valued Var. Anal. 18, 373–404 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for monotone inclusions. Math. Program. B168, 645–672 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Combettes, P.L., Müller, C.L.: Perspective functions: proximal calculus and applications in high-dimensional statistics. J. Math. Anal. Appl. 457, 1283–1306 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Combettes, P.L., Nguyen, Q.V.: Solving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn–Tucker set. J. Convex Anal. 23, 481–510 (2016)

    MathSciNet  MATH  Google Scholar 

  46. Combettes, P.L., Pesquet, J.-C.: Proximal thresholding algorithm for minimization over orthonormal bases. SIAM J. Optim. 18, 1351–1376 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Combettes, P.L., Pesquet, J.-C.: A Douglas–Rachford splitting approach to nonsmooth convex variational signal recovery. IEEE J. Sel. Top. Signal Process. 1, 564–574 (2007)

    Google Scholar 

  48. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York (2011)

    Google Scholar 

  49. Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set Valued Var. Anal. 20, 307–330 (2012)

    MathSciNet  MATH  Google Scholar 

  50. Combettes, P.L., Salzo, S., Villa, S.: Consistent learning by composite proximal thresholding. Math. Program. B167, 99–127 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Combettes, P.L., Vũ, B.C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63, 1289–1318 (2014)

    MathSciNet  MATH  Google Scholar 

  52. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Combettes, P.L., Yamada, I.: Compositions and convex combinations of averaged nonexpansive operators. J. Math. Anal. Appl. 425, 55–70 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 460–479 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set Valued Var. Anal. 25, 829–858 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Duchi, J., Singer, Y.: Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 10, 2899–2934 (2009)

    MathSciNet  MATH  Google Scholar 

  57. Eckstein, J.: Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4, 75–83 (1994)

    Google Scholar 

  58. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    MathSciNet  MATH  Google Scholar 

  59. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, pp. 299–331. North-Holland, Amsterdam (1983)

    Google Scholar 

  60. Ghoussoub, N.: Self-Dual Partial Differential Systems and Their Variational Principles. Springer, New York (2009)

    MATH  Google Scholar 

  61. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    MATH  Google Scholar 

  62. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires. RAIRO Anal. Numer. 2, 41–76 (1975)

    MATH  Google Scholar 

  63. Glowinski, R., Osher, S.J., Yin, W. (eds.): Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, New York (2016)

    MATH  Google Scholar 

  64. Golomb, M.: Zur Theorie der nichtlinearen Integralgleichungen, Integralgleichungssysteme und allgemeinen Funktionalgleichungen. Math. Z. 39, 45–75 (1935)

    MathSciNet  MATH  Google Scholar 

  65. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    MathSciNet  MATH  Google Scholar 

  66. He, B., Yuan, X.: Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imaging Sci. 5, 119–149 (2012)

    MathSciNet  MATH  Google Scholar 

  67. Hundal, H.S.: An alternating projection that does not converge in norm. Nonlinear Anal. 57, 35–61 (2004)

    MathSciNet  MATH  Google Scholar 

  68. Idrissi, H., Lefebvre, O., Michelot, C.: Applications and numerical convergence of the partial inverse method. Lect. Notes Math. 1405, 39–54 (1989)

    MathSciNet  MATH  Google Scholar 

  69. Jenatton, R., Mairal, J., Obozinski, G., Bach, F.: Proximal methods for hierarchical sparse coding. J. Mach. Learn. Res. 12, 2297–2334 (2011)

    MathSciNet  MATH  Google Scholar 

  70. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)

    MathSciNet  MATH  Google Scholar 

  71. Kačurovskiĭ, R.I.: Monotone operators and convex functionals. Uspekhi Mat. Nauk 15, 213–215 (1960)

    Google Scholar 

  72. Kačurovskiĭ, R.I.: Nonlinear monotone operators in Banach spaces. Uspekhi Mat. Nauk. 23, 121–168 (1968). English translation: Russian Math. Surveys, vol. 23, pp. 117–165, (1968)

    MathSciNet  Google Scholar 

  73. Kōmura, Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Jpn. 19, 493–507 (1967)

    MathSciNet  MATH  Google Scholar 

  74. Lawrence, J., Spingarn, J.E.: On fixed points of non-expansive piecewise isometric mappings. Proc. Lond. Math. Soc. 55, 605–624 (1987)

    MATH  Google Scholar 

  75. Lemaire, B.: The proximal algorithm. In: Penot, J.P. (ed.) New Methods in Optimization and Their Industrial Uses International Series of Numerical Mathematics, vol. 87, pp. 73–87. Birkhäuser, Boston (1989)

    Google Scholar 

  76. Lenoir, A., Mahey, Ph.: A survey on operator splitting and decomposition of convex programs. RAIRO Oper. Res. 51, 17–41 (2017)

    MathSciNet  MATH  Google Scholar 

  77. Leray, J., Lions, J.-L.: Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965)

    MathSciNet  MATH  Google Scholar 

  78. Levi, B.: Sul principio di Dirichlet. Rend. Circ. Mat. Palermo 22, 293–359 (1906)

    MATH  Google Scholar 

  79. Levitin, E.S., Polyak, B.T.: Constrained minimization methods, U.S.S.R. Comput. Math. Math. Phys. 6, 1–50 (1966)

    Google Scholar 

  80. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    MathSciNet  MATH  Google Scholar 

  81. Mahey, Ph., Oualibouch, S., Tao, Pham Dinh: Proximal decomposition on the graph of a maximal monotone operator. SIAM J. Optim. 5, 454–466 (1995)

    MathSciNet  MATH  Google Scholar 

  82. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Oper. 4, 154–158 (1970)

    MATH  Google Scholar 

  83. Martinet, B.: Détermination approchée d’un point fixe d’une application pseudo-contractante. Cas de l’application prox. C. R. Acad. Sci. Paris A274, 163–165 (1972)

    MATH  Google Scholar 

  84. Mercier, B.: Topics in Finite Element Solution of Elliptic Problems (Lectures on Mathematics, no. 63). Tata Institute of Fundamental Research, Bombay (1979)

    Google Scholar 

  85. Minty, G.J.: Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29, 341–346 (1962)

    MathSciNet  MATH  Google Scholar 

  86. Minty, G.J.: On a “monotonicity” method for the solution of nonlinear equations in Banach spaces. Proc. Natl. Acad. Sci. USA 50, 1038–1041 (1963)

    MATH  Google Scholar 

  87. Minty, G.J.: On the monotonicity of the gradient of a convex function. Pac. J. Math. 14, 243–247 (1964)

    MathSciNet  MATH  Google Scholar 

  88. Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. Paris Sér. A Math. 255, 238–240 (1962)

    MATH  Google Scholar 

  89. Moreau, J.J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. C. R. Acad. Sci. Paris A255, 2897–2899 (1962)

    MathSciNet  MATH  Google Scholar 

  90. Moreau, J.J.: Les liaisons unilatérales et le principe de Gauss. C. R. Acad. Sci. Paris A256, 871–874 (1963)

    Google Scholar 

  91. Moreau, J.J.: Propriétés des applications “prox”. C. R. Acad. Sci. Paris A256, 1069–1071 (1963)

    MATH  Google Scholar 

  92. Moreau, J.J.: Fonctionnelles sous-différentiables. C. R. Acad. Sci. Paris A257, 4117–4119 (1963)

    MATH  Google Scholar 

  93. Moreau, J.J.: Sur la naissance de la cavitation dans une conduite. C. R. Acad. Sci. Paris A259, 3948–3950 (1964)

    MathSciNet  MATH  Google Scholar 

  94. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  95. Moreau, J.J.: Quadratic programming in mechanics: dynamics of one-sided constraints. SIAM J. Control 4, 153–158 (1966)

    MathSciNet  Google Scholar 

  96. Nguyen, Q.V.: Forward-backward splitting with Bregman distances. Viet. J. Math. 45, 519–539 (2017)

    MathSciNet  MATH  Google Scholar 

  97. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591–597 (1967)

    MathSciNet  MATH  Google Scholar 

  98. Papadakis, N., Peyré, G., Oudet, E.: Optimal transport with proximal splitting. SIAM J. Imaging Sci. 7, 212–238 (2014)

    MathSciNet  MATH  Google Scholar 

  99. Phelps, R.R.: Convex Functions, Monotone Operators and Differentiability, 2nd edn. Springer, Berlin (1993)

    MATH  Google Scholar 

  100. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imaging Sci. 6, 1199–1226 (2013)

    MathSciNet  MATH  Google Scholar 

  101. Rockafellar, R.T.: Convex Functions and Dual Extremum Problems. Ph.D. thesis, Harvard University (1963)

  102. Rockafellar, R.T.: Characterization of the subdifferentials of convex functions. Pac. J. Math. 17, 497–510 (1966)

    MathSciNet  MATH  Google Scholar 

  103. Rockafellar, R.T.: Monotone operators associated with saddle-functions and minimax problems. In: Browder, E. (ed.) Nonlinear Functional Analysis, Part 1, pp. 241–250. AMS, Providence (1970)

    Google Scholar 

  104. Rockafellar, R.T.: Saddle points and convex analysis. In: Kuhn, H.W., Szegö, G.P. (eds.) Differential Games and Related Topics, pp. 109–127. North-Holland, New York (1971)

    Google Scholar 

  105. Rockafellar, R.T.: Conjugate Duality and Optimization. SIAM, Philadelphia (1974)

    MATH  Google Scholar 

  106. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    MathSciNet  MATH  Google Scholar 

  107. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1, 97–116 (1976)

    MathSciNet  MATH  Google Scholar 

  108. Rockafellar, R.T., Wets, R.J.B.: Scenarios and policy aggregation in optimization under uncertainty. Math. Oper. Res. 16, 1–29 (1991)

    MathSciNet  MATH  Google Scholar 

  109. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. American Mathematical Society, Providence (1997)

    MATH  Google Scholar 

  110. Simons, S.: From Hahn–Banach to Monotonicity, 2nd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  111. Spingarn, J.E.: Partial inverse of a monotone operator. Appl. Math. Optim. 10, 247–265 (1983)

    MathSciNet  MATH  Google Scholar 

  112. Spingarn, J.E.: Applications of the method of partial inverses to convex programming: decomposition. Math. Program. 32, 199–223 (1985)

    MathSciNet  MATH  Google Scholar 

  113. Spingarn, J.E.: A projection method for least-squares solutions to overdetermined systems of linear inequalities. Linear Algebra Appl. 86, 211–236 (1987)

    MathSciNet  MATH  Google Scholar 

  114. Sra, S., Nowozin, S., Wright, S.J. (eds.): Optimization for Machine Learning. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  115. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29, 119–138 (1991)

    MathSciNet  MATH  Google Scholar 

  116. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    MathSciNet  MATH  Google Scholar 

  117. Vaĭnberg, M.M.: Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations. Nauka, Moskow (1972). English translation: Wiley, NY (1973)

    Google Scholar 

  118. Vaĭnberg, M.M., Kačurovskiĭ, R.I.: On the variational theory of nonlinear operators and equations. Dokl. Akad. Nauk SSSR 129, 1199–1202 (1959)

    MathSciNet  MATH  Google Scholar 

  119. Vaiter, S., Peyré, G., Fadili, J.: Model consistency of partly smooth regularizers. IEEE Trans. Inf. Theory 64, 1725–1737 (2018)

    MathSciNet  Google Scholar 

  120. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38, 667–681 (2013)

    MathSciNet  MATH  Google Scholar 

  121. Yu, Y.-L.: On decomposing the proximal map. Adv. Neural Inf. Process. Syst. 16, 91–99 (2013)

    Google Scholar 

  122. Zarantonello, E.H.: Solving Functional Equations by Contractive Averaging, Mathematical Research Center Technical Summary Report no. 160. University of Wisconsin, Madison (1960)

    Google Scholar 

  123. Zarantonello, E.H. (ed.): Contributions to Nonlinear Functional Analysis. Academic Press, New York (1971)

    MATH  Google Scholar 

  124. Zarantonello, E.H.: The product of commuting conical projections is a conical projection. Proc. Am. Math. Soc. 38, 591–594 (1973)

    MathSciNet  MATH  Google Scholar 

  125. Zarantonello, E.H.: L’algèbre des projecteurs coniques. Lect. Notes Econ. Math. Syst. 102, 232–243 (1974)

    MathSciNet  MATH  Google Scholar 

  126. Zarantonello, E.H.: La structure des opérateurs monotones. Rev. Un. Mat. Argent. 34, 90–96 (1988)

    MathSciNet  MATH  Google Scholar 

  127. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B—Nonlinear Monotone Operators. Springer, New York (1990)

    MATH  Google Scholar 

  128. Zeng, X., Figueiredo, M.: Solving OSCAR regularization problems by fast approximate proximal splitting algorithms. Digital Signal Process. 31, 124–135 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Combettes.

Additional information

This work was supported by the National Science Foundation under Grant CCF-1715671.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combettes, P.L. Monotone operator theory in convex optimization. Math. Program. 170, 177–206 (2018). https://doi.org/10.1007/s10107-018-1303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1303-3

Keywords

Mathematics Subject Classification

Navigation