Skip to main content

Advertisement

Log in

Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

A spatially differentiated, management-revised projection of natural water availability up to 2053 was requested for a basin-wide scenario study about the impact of global change in the Elbe River basin. Detailed discharge and weather information of the recent years 1951–2003 were available for model calibration and validation. However, the straightforward “classic” approach of calibrating a hydrological model on observed data and running it with a climate scenario could not be taken, because most observed river runoffs in Central Europe are modified by human management. This paper reports how the problem was addressed and how a major projection bias could be avoided. The eco-hydrological model SWIM was set up to simulate the discharge dynamics on a daily time step. The simulation area of 134,890 km² was divided into 2,278 sub-basins that were subdivided into more than 47,500 homogeneous landscape units (hydrotopes). For each hydrotope, plant growth and water fluxes were simulated while river routing calculation was based on the sub-basin structure. The groundwater module of SWIM had to be extended for accurate modelling of low flow periods. After basin-scale model calibration and revisions for known effects of lignite mining and water management, evapotranspiration and groundwater dynamics were adjusted individually for more than 100 sub-areas largely covering the entire area. A quasi-natural hydrograph was finally derived for each sub-area taking into account management data for the years 2002 (extremely wet) and 2003 (extremely dry). The validated model was used to access the effect of two climate change scenarios consisting of 100 realisations each and resembling temperature increases of 2 and 3 K, respectively. Additionally, four different land use scenarios were considered. In all scenario projections, discharge decreases strongly: The observed average discharge rate in the reference period 1961–1990 is 171 mm/a, and the scenario projections for the middle of the twenty-first century give 91–110 mm/a, mainly depending on the climate scenario. The area-averaged evapotranspiration increases only marginally within the scenario period, e.g., from about 570 to about 580 mm/a for the temperature increase of 2 K, while potential evapotranspiration increases considerably from about 780 to more than 900 mm/a. Both discharge and evapotranspiration changes vary strongly within the basin, correlating with elevation. The runoff coefficient that globally decreases from 0.244 to 0.160 in the 2 K scenario is locally governed primarily by land use; 68% of the variance of the decreases can be attributed to this factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen J, Refsgaard JC, Jensen KH (2001) Distributed hydrological modelling of the Senegal River Basin—model construction and validation. J Hydrol 247(3–4):200–214. doi:10.1016/S0022-1694(01)00384-5

    Article  Google Scholar 

  • Arnold JG, Allen PM, Bernhardt A (1993) A comprehensive surface-groundwater flow model. J Hydrol 142(1–4):47–69. doi:10.1016/0022-1694(93)90004-S

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89. doi:10.1111/j.17521688.1998.tb05961.x

    Article  CAS  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Allen PM (1999) Continental scale simulation of the hydrologic balance. J Am Water Resour Assoc 35(5):1037–1051. ISSN: 1093-474X

    Google Scholar 

  • Artinyan E, Habets F, Noilhan J, Ledoux E, Dimitrov D, Martin E, Le Moigne P (2008) Modelling the water budget and the riverflows of the Maritsa basin in Bulgaria. Hydrol Earth Syst Sci 12(1):21–37

    Article  Google Scholar 

  • ATV-DVWK (2002) Verdunstung in Bezug zu Landnutzung, Bewuchs und Boden. DWA-Merkblätter ATV-DVWK-M 504. Hennef

  • Bekele EG, Nicklow JW (2007) Multi-objective automatic calibration of SWAT using NSGA-II. J Hydrol 341(3–4):165–176. doi:10.1016/j.jhydrol.2007.05.014

    Article  Google Scholar 

  • Blazejczak J, Gornig M, Schulz E (2012) Szenarien zur Demografie und Ökonomie in der Elbe-Region. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 2.5. Weißensee-Verlag, Berlin

  • Blobel V, Lohrmann E (1989) Statistische und numerische Methoden der Datenanalyse. Teubner Stuttgart. ISBN: 3-519-03243-0

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide—Addendum 2000. Technical Report 40, European Environmental Agency, Copenhagen

  • Cao WZ, Bowden WB, Davie T, Fenemor A (2006) Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol Process 20(5):1057–1073. doi:10.1002/hyp.5933

    Article  Google Scholar 

  • CEC (1995) Corine land cover. Technical Guide. Published by the Commission of the European Communities, Luxemburg

    Google Scholar 

  • Cheng SJ (2011) The best relationship between lumped hydrograph parameters and urbanized factors. Nat Hazards 56(3):853–867. doi:10.1007/s11069-010-9596-4

    Article  Google Scholar 

  • Cole CA, Cirmo CP, Wardrop DH, Brooks RP, Peterson-Smith J (2008) Transferability of an HGM wetland classification scheme to a longitudinal gradient of the central Appalachian Mountains: Initial Hydrol Results Wetl 28(2):439–449. ISSN: 0277-5212

    Google Scholar 

  • Conradt T, Koch H, Hattermann FF, Wechsung F (2012a) Validierung von Lokalkorrekturen der Verdunstung bei den Szenariosimulationen des Wasserabflusses. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 2.4. Weißensee-Verlag, Berlin

  • Conradt T, Hattermann FF, Koch H, Wechsung F (2012b) Precipitation or evapotranspiration? Bayesian analysis of potential error sources in the simulation of sub-basin discharges in the Czech Elbe River basin. Reg Environ Change. doi:10.1007/s10113-012-0280-y

  • Dietrich O, Schweigert S, Steidl J (2008) Impact of climate change on the water balance of fen wetlands in the Elbe Lowland. In: Farrell C, Feehan J (eds) After wise use—the future of Peatlands. Proceedings of the 13th international peat congress, vol 1, Tullamore, Ireland, 8–13 June 2008, pp 32–35. International Peat Society, Jyväskylä, Finland. ISBN: 0-9514890-4-6. URL: http://www.peatsociety.org/user_files/files/Oral_Proceedings.pdf

  • Dietrich O, Pavlik D, Schweigert S, Steidl J (2012) Wasserhaushalt großer Feuchtgebiete im Elbe-Tiefland. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 3.3. Weißensee-Verlag, Berlin

  • Doherty J (2004) PEST model-independent parameter estimation—user manual, 5th edn. Published online. URL: http://www.sspa.com/pest/download/pestman.pdf

  • DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK Merkblätter 238. Hennef, Germany

  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The shuttle radar topography mission. Rev Geophys 45(2):RG2004. doi:10.1029/2005RG000183

    Google Scholar 

  • Faulhaber P, Willamowski B (2002) Schifffahrtsbedingungen der Elbe—Ein Überblick über die Bezugswasserstände für Ausbau und Unterhaltung. In: Geller W, Punčochář P, Guhr H. von Tümpling W. jun., Medek J, Smrt’ak J, Feldmann H, Uhlmann O (Hrsg.) Die Elbe—neue Horizonte des Flussgebietsmanagements. 10. Magdeburger Gewässerschutzseminar (Tagungsband). Teubner, Stuttgart. ISBN: 3-519-00420-8. S287–S290

  • Fernandez W, Vogel RM, Sankarasubramanian A (2000) Regional calibration of a watershed model. J Hydrol Sci 45(5):689–707

    Article  Google Scholar 

  • Finke W, Bjarsch B (1996) Methoden zur Bereinigung von Abflußmeßreihen um die Einflüsse der Wassernutzungen. Deutsche Gewässerkundliche Mitteilungen 40(5):194–203

    Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50(4):1211–1250. ISSN: 0001-2351

    Google Scholar 

  • Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439:835–838. doi:10.1038/nature04504

    Article  CAS  Google Scholar 

  • Gerstengarbe F-W, Werner PC (2005) Simulationsergebnisse des regionalen Klimamodells STAR. In: Wechsung F, Becker A, Gräfe P (eds) Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet, vol. 6 in series „Konzepte für die nachhaltige Entwicklung einer Flusslandschaft“. Weißensee-Verlag, Berlin, pp 110–118

  • Gerstengarbe F-W, Werner PC, Orlowsky B, Wodinski M (2012) Regionale Klimaszenarien. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 2.2. Weißensee-Verlag, Berlin

  • Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S (2004) Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J Hydrol 286(1–4):249–270. doi:10.1016/j.jhydrol.2003.09.029

    Article  CAS  Google Scholar 

  • Glugla G, König B (1989) VERMO—Ein Modell für die Berechnung des Jahresganges der Evaporation, Versickerung und Grundwasserneubildung. Tagungsbericht 275, Akademie der Landwirtschaftswissenschaften der DDR, Berlin, S, pp 85–91

  • Grünewald U (2001) Water resources management in river catchments influenced by lignite mining. Ecol Eng 17(2–3):143–152. doi:10.1016/S0925-8574(00)00154-3

    Article  Google Scholar 

  • Grünewald U (2003) Die „hydrologische Problematik“ von Tagebauseen: Wassermenge, Wasserqualität und zukünftige Nutzung. Petermanns Geogr Mitt 147:14–21

    Google Scholar 

  • Güntner A (2002) Large-scale hydrological modelling in the semi-arid north-east of Brazil. PhD thesis, University of Potsdam. Also published as: PIK-Report 77. Potsdam-Institute for Climate Impact Research

  • Habeck A, Krysanova V, Hattermann FF (2005) Integrated analysis of water quality in a mesoscale lowland basin. Adv Geosci 5:13–17

    Article  Google Scholar 

  • Hartje V, Ansmann T, Blazejczak J, Gömann H, Gornig M, Grossmann M, Hillenbrand T, Hoymann J, Kreins P, Markewitz P, Mutafoglu K, Richmann A, Sartorius C, Schulz E, Vögele S, Walz R (2012) Regionalisierung globaler sozioökonomischer Wandelprozesse für die Wasserwirtschaft. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 2.1. Weißensee-Verlag, Berlin

  • Hartwich R, Behrens J, Eckelmann W, Haase G, Richter A, Roeschmann G, Schmidt R (1995) Bodenübersichtskarte der Bundesrepublik Deutschland 1:1000000 (BÜK 1000). Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

    Google Scholar 

  • Hattermann FF (2005) Integrated modelling of global change impacts in the German Elbe River Basin. PhD thesis, University of Potsdam

  • Hattermann FF, Krysanova V, Wechsung F, Wattenbach M (2004) Integrating groundwater dynamics in regional hydrological modelling. Environ Model Softw 19(11):1039–1051. doi:10.1016/j.envsoft.2003.11.007

    Article  Google Scholar 

  • Hattermann FF, Krysanova V, Wechsung F (2005a) Folgen von Klimawandel und Landnutzungsänderungen für den Landschaftswasserhaushalt und die landwirtschaftlichen Erträge im Gebiet der deutschen Elbe. In: Wechsung F, Becker A, Gräfe P (eds) Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet, vol. 6 in series „Konzepte für die nachhaltige Entwicklung einer Flusslandschaft“. Weißensee Verlag, Berlin, pp 151–164

  • Hattermann FF, Wattenbach M, Krysanova V, Wechsung F (2005b) Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe catchment—validation and uncertainty analysis. Hydrol Process 19(3):693–714. doi:10.1002/hyp.5625

    Article  Google Scholar 

  • Hattermann FF, Krysanova V, Post J, Gerstengarbe F-W, Werner PC, Wechsung F (2005c) Assessing uncertainty of water availability in a Central European river basin (Elbe) under climate change. In: Hattermann FF (ed) Integrated modelling of global change impacts in the German Elbe River Basin. PhD Thesis, University of Potsdam, pp 119–149

  • Hattermann FF, Krysanova V, Habeck A, Bronstert A (2006) Integrating wetlands and riparian zones in river basin modelling. Ecol Model 199(4):379–392. doi:10.1016/j.ecolmodel.2005.06.012

    Article  Google Scholar 

  • Heuvelmans G, Muys B, Feyen J (2004) Analysis of the spatial variation in the parameters of the SWAT model with application in Flanders, Northern Belgium. Hydrol Earth Syst Sci 8(5):931–939

    Article  Google Scholar 

  • Hoymann J (2010a) Spatial allocation of future residential land use in the Elbe River Basin. Environ Plan B Plan Des 37(5):911–928. doi:10.1068/b36009

    Article  Google Scholar 

  • Hoymann J (2010b) Modelling future residential development—a scenario analysis for the Elbe River Basin. Diss., Technical University of Berlin, Germany, XXII + 174 pages. ISBN: 978-3-7983-2276-9

  • Hoymann J (2011) Accelerating urban sprawl in depopulating regions: a scenario analysis for the Elbe River Basin. Reg Environ Change 11(1):73–86. doi:10.1007/s10113-010-0120-x

    Article  Google Scholar 

  • Hoymann J, Dekkers J, Koomen E (2012) Szenarien zur Siedlungsflächenentwicklung. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 2.6. Weißensee-Verlag, Berlin

  • ICPER (2005) Internationale Flussgebietseinheit Elbe—Merkmale der Flussgebietseinheit, Überprüfung der Umweltauswirkungen menschlicher Tätigkeiten und wirtschaftliche Analyse der Wassernutzung. Report to the European Commission containing the analysis of characteristics in accordance with Article 5 of the Water Framework Directive (2005 Report for the International District of the Elbe River Basin). International Commission for the Protection of the Elbe River, Dresden (German language version; also published in Czech)

  • Iman RL, Helton JC, Campbell JE (1981) An approach to sensitivity analysis of computer models—1 Introduction, input variable selection and preliminary variable assessment. J Qual Technol 13(3):174–183. ISSN: 0022-4065

    Google Scholar 

  • Kaltofen M, Hentschel M, Kaden S, Dietrich O, Koch H (2012) Wasserverfügbarkeit im deutschen Elbegebiet. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 3.1. Weißensee-Verlag, Berlin

  • Koch H (2005) Wasserbewirtschaftungsstrategien in vom Bergbau überprägten Einzugsgebieten im Kontext des globalen Wandels und deren integrierte Bewertung. PhD thesis, BTU Cottbus. Aktuelle Reihe 1/2005. ISSN: 1615-7818

  • Koch H, Wechsung F, Grünewald U (2010) Analyse jüngerer Niedrigwasserabflüsse im tschechischen Einzugsgebiet. Hydrologie und Wasserbewirtschaftung 54(3):169–178

    Google Scholar 

  • Koch H, Kaltofen M, Kaden S, Grünewald U (2012) Effects of global change on water availability in the Czech Elbe region. Reg Environ Change (submitted)

  • Krysanova V, Müller-Wohlfeil D-I, Becker A (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol Model 106(2–3):261–289. doi:10.1016/S0304-3800(97)00204-4

    Article  CAS  Google Scholar 

  • Krysanova V, Wechsung F, Arnold J, Srinivasan R, Williams J (2000) SWIM (Soil and Water Integrated Model) user manual. PIK Report 69. Potsdam Institute for Climate Impact Research, Potsdam, Germany

  • Krysanova V, Hattermann F, Habeck A (2005) Expected changes in water resources availability and water quality with respect to climate change in the Elbe River basin (Germany). Nordic Hydrol 36(4–5):321–333

    CAS  Google Scholar 

  • Krysanova V, Kundzewicz ZW, Pińskwar I, Habeck A (2006) Regional socio-economic and environmental changes and their impacts on water resources on example of Odra and Elbe Basins. Water Resour Manag 20(4):607–641. doi:10.1007/s11269-006-3091-4

    Article  Google Scholar 

  • Lee H, McIntyre NR, Wheater HS, Young AR (2006) Predicting runoff in ungauged UK catchments. Proc Inst Civil Eng Water Manage 159(2):129–138. ISSN: 1741-7589

    Google Scholar 

  • Liu Y, Soonthornnonda P, Li J, Christensen ER (2011) Stormwater runoff characterized by GIS determined source areas and runoff volumes. Environ Manage 47(2):201–217. doi:10.1007/s00267-010-9591-2

    Article  Google Scholar 

  • Maidment DR (ed) (1993) Handbook of hydrology. McGraw-Hill, New York. ISBN: 978-0070397323

  • McKay MD, Beckman RJ, Conover WJ (1979) Comparison of 3 methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2):239–245. ISSN: 0040-1706

    Google Scholar 

  • Moussa R, Chahinian N, Bocquillon C (2007) Distributed hydrological modelling of a Mediterranean mountainous catchment—model construction and multi-site validation. J Hydrol 337(1–2):35–51. doi:10.1016/j.jhydrol.2007.01.028

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grübler A, Jung TY, Kram T, Lebre La Rovere E, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith S, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. In: Nakicenovic N, Swart R (eds) Cambridge University Press, Cambridge. ISBN: 978-0521804936

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Němeček J, Kozák J (2003) Approaches to the solution of a soil map of the Czech republic at the scale 1:250,000 using SOTER methodology. Plant Soil Environ 49(7):291–297

    Google Scholar 

  • Notebaert B, Verstraeten G, Ward P, Renssen H, Van Rompaey A (2011) Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale. Geomorphology 126(1–2):18–31. doi:10.1016/j.geomorph.2010.08.016

    Article  Google Scholar 

  • Orlowsky B (2007) Setzkasten Vergangenheit—ein kombinatorischer Ansatz für regionale Klimasimulationen. PhD Thesis, Universität Hamburg

  • Post J, Conradt T, Suckow F, Krysanova V, Wechsung F, Hattermann FF (2008) Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River basin. Hydrol Sci J 53(5):1043–1058. ISSN: 0262-6667

    Google Scholar 

  • Quiel K, Becker A, Kirchesch V, Schöl A, Fischer H (2010) Influence of global change on phytoplankton and nutrient cycling in the Elbe River. Reg Environ Change. published online, 7 Sept 2010. doi:10.1007/s10113-010-0152-2 (in press)

  • Quiel K, Schöl A, Kirchesch V, Becker A, Fischer H (2012) Phytoplankton und Nährstoffumsatz im Elbestrom. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 4.2. Weißensee-Verlag, Berlin

  • Reed S, Koren V, Smith M, Zhang Z, Moreda F, Seo D-J, DMIP Participants (2004) Overall distributed model intercomparison project results. J Hydrol 298(1–4):27–60. doi:10.1016/j.jhydrol.2004.03.031

    Article  Google Scholar 

  • Richter D (1995) Ergebnisse methodischer Untersuchungen zur Korrektur des systematischen Meßfehlers des Hellmann-Niederschlagsmessers. Berichte des DWD, vol 194. Deutscher Wetterdienst (DWD), Offenbach. ISBN: 978-3-88148-309-4

  • Ritchie JT (1972) Model for predicting evaporation from a row crop with incomplete cover. Water Resour Res 8(5):1204–1213

    Article  Google Scholar 

  • Simon M, Bekele V, Kulasová B, Maul C, Oppermann R, Řehák P (2005) Die Elbe und ihr Einzugsgebiet—Ein geografisch-hydrologischer und wasserwirtschaftlicher Überblick. International Commission on the Protection of the Elbe River, Magdeburg

    Google Scholar 

  • Snelder TH, Lamouroux N, Leathwick JR, Pella H, Sauquet E, Shankar U (2009) Predictive mapping of the natural flow regimes of France. J Hydrol 373(1–2):57–67. doi:10.1016/j.jhydrol.2009.04.011

    Article  Google Scholar 

  • Tomášek, M. (2003) Půdy České republiky (The Soils of the Czech Republic). Česká geologická služba (Czech Geological Survey), Prague, Czech Republic. ISBN: 80-7075-607-1

  • Venohr M, Opitz D, Behrendt H† (2012) Nährstoffeinträge und - frachten im Elbegebiet. In: Wechsung F, Hartje V, Kaden S, Venohr M, Hansjürgens B, Gräfe P (eds) Die Elbe und ihr Einzugsgebiet im globalen Wandel - Szenarien für eine Plus-2-Grad-Welt, chap. 4.1. Weißensee-Verlag, Berlin

  • Voß A (2007) Untersuchung und Modellierung der Stickstoff- und Phosphorumsatz- und Transportprozesse in mesoskaligen Einzugsgebieten des Tieflandes am Beispiel von Nuthe, Hammerfließ und Stepenitz. PhD Thesis, University of Potsdam

  • Wechsung F, Hanspach A, Hattermann F, Werner PC, Gerstengarbe F-W (2006) Klima und anthropogene Wirkungen auf den Niedrigwasserabfluss der mittleren Elbe: Konsequenzen für Unterhaltungsziele und Ausbaunutzen. Contract study (in German), Potsdam-Institute for Climate Impact Research. 50 S. URL: http://glowa-elbe.de/pdf/publications/elbe_nw_1p31.pdf. Last Accessed Nov 2011

  • Werner PC (2007) Personal communication. Potsdam-Institute for Climate Impact Research, Potsdam

    Google Scholar 

  • Werner P, Gerstengarbe F-W (1997) Proposal for the development of climate scenarios. Clim Res 8(3):171–182

    Article  Google Scholar 

  • Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan F, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at earth’s surface. Science 308(5273):847–850. doi:10.1126/science.1103215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to all project partners involved for the good cooperation, especially for numerous valuable remarks during the process of calibration and validation. Sincere thanks are given to the German Federal Ministry for Education and Research (BMBF) and the project management agency at the German Aerospace Center (PT-DLR) for the funding of the GLOWA-Elbe project (grant no. 01 LW 0603 A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Conradt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conradt, T., Koch, H., Hattermann, F.F. et al. Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River basin. Reg Environ Change 12, 633–648 (2012). https://doi.org/10.1007/s10113-012-0279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0279-4

Keywords

Navigation