Skip to main content

Advertisement

Log in

Projections of climate change impacts on floods and droughts in Germany using an ensemble of climate change scenarios

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Under a warming climate, changes in hydrological extremes may be more significant than changes in hydrological mean conditions. Due to the high risk of damage and the increasing trends of floods and droughts in Germany, the potential changes in hydrological extreme events are of high importance. However, projections of extreme events particularly for floods are associated with large uncertainties and depend on climate scenarios. If only a few scenarios are applied, there is a danger that the impact assessment is biased. This study aims to evaluate the performance of a set of climate scenarios from the ENSEMBLES project for flood and drought projections and to detect the robust changes using the eco-hydrological model SWIM in five large river basins covering 90 % of the German territory. The study shows that there is a moderate certainty that most German rivers will experience more extreme 50-year floods and more frequent occurrences of 50-year droughts. Projected changes with a high certainty include an increasing trend of floods in the Elbe basin and more frequent extreme droughts in the Rhine basin in 2061–2100. Wetter conditions, i.e., more extreme floods and less frequent droughts, are projected for the alpine rivers in 2021–2060. Using only those RCMs for impact assessments that perform best in the reference period does not guarantee more consistent and certain future projections. Hence, the use of the whole ensemble of available scenarios is necessary to quantify the “full” range of uncertainties corresponding to the current state of knowledge and assuring the robustness of projected change patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arnold JG, Williams JR, Nicks AD, Sammons NB (1990) SWRRB: a basin scale simulation model for soil and water resources management. Texas A & M University Press, College Station

    Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment, part I: model development. J Am Water Resour Assoc 34(1):73–89

    Article  CAS  Google Scholar 

  • Bronstert A, Engel H (2011) Veränderungen der Abflüsse. In: Lozan JL, Graßl H, Hupfer P, Krabe L, Schönwiese CD (eds) Warnsignal Klima. Genug Wasser für alle? Wissenschaftliche Auswertungen, 3. Hamburg, Auflage pp 291–301

  • Cameron D (2006) An application of the UKCIP02 climate change scenarios to flood estimation by continuous simulation for a gauged catchment in the northeast of Scotland, UK (with uncertainty). J Hydrol 328(1):212–226

    Article  Google Scholar 

  • Christensen OB, Christensen JH (2004) Intensification of extreme European summer precipitation in a warmer climate. Glob Planet Change 44:107–117. doi:10.1016/j.gloplacha.2004.06.013

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer, London

    Book  Google Scholar 

  • Dankers R, Feyen L (2009) Flood hazard in Europe in an ensemble of regional climate scenarios. J Geophys Res 114:D16108. doi:10.1029/2008JD011523

    Article  Google Scholar 

  • Dankers R, Christensen OB, Feyen L, Kalas M, de Roo A (2007) Evaluation of very high-resolution climate model data for simulating flood hazards in the upper Danube basin. J Hydrol 347:319–331

    Article  Google Scholar 

  • Dynesius M, Nilsson C (1994) Fragmentation and flow regulation of river systems in the northern third of the world. Science 266:753–762

    Article  CAS  Google Scholar 

  • Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS opinions “should we apply bias correction to global and regional climate model data?”. Hydrol Earth Syst Sci Discuss 9:5355–5387

    Article  Google Scholar 

  • ENSEMBLES (2009) Climate change and its impacts at seasonal, decadal and centennial timescales. Final report, p 164 http://www.ensembles-eu.org

  • Faramarzi M, Abbaspour KC, Vaghefi SA, Farzaneh M, Zehnder AJB, Srinivasan R, Yang H (2013) Modeling impacts of climate change on freshwater availability in Africa. J Hydrol 480:85–101

    Article  Google Scholar 

  • Feyen L, Dankers R (2009) Impact of global warming on streamflow drought in Europe. J Geophys Res 114:D17116. doi:10.1029/2008JD011438

    Article  Google Scholar 

  • Fleig AK, Tallaksen LM, Hisdal H, Demuth S (2006) A global evaluation of streamflow drought characteristics. Hydrol Earth Syst Sci 10:535–552

    Article  Google Scholar 

  • Gelfan A, Pomeroy J, Kuchment L (2004) Modelling forest cover influences on snow accumulation, sublimation, and melt. J Hydrometeorol 5(5):785–803

    Article  Google Scholar 

  • Giorgi F, Coppola E (2010) Does the model regional bias affect the projected regional climate change? An analysis of global model projections. Clim Change 100:787–795

    Article  Google Scholar 

  • Graham LP, Andréasson J, Carlsson B (2007) Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods—a case study on the Lule river basin. Clim Change 81(Suppl. 1):293–307. doi:10.1007/s10584-006-9215-2

    Article  Google Scholar 

  • HAD (Hydrologischer Atlas von Deutschland) (2000) Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, ISBN:3-00-005624-6

  • Hawkins E, Sutton R. (2012) Time of emergence of climate signals. Geophys Res Lett 39:L01702. doi:10.1029/2011GL050087

  • Hennegriff W, Ihringer J, Kolokotronis V (2008) Prognose von Auswirkungen des Klimawandels auf die Niedrigwasser-verhältnisse in Baden-Württemberg. Korresp Wasserwirtsch 6(1):309–314. doi:10.3243/kwe2008.06.003 (in German)

    Google Scholar 

  • Hooghoudt SB (1940) Bijdrage tot de kennis van enige natuurkundige grootheden van de grond. Versl Landbouwkd Onderz 46(14):515–707

    Google Scholar 

  • Huang S, Krysanova V, Österle H, Hattermann FF (2010) Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrol Process 24(23):3289–3306

    Article  Google Scholar 

  • Huang S, Hattermann FF, Krysanova V, Bronstert A (2012a) Projections of impact of climate change on river flood conditions in Germany by combining three different RCMs with a regional hydrological model. Clim Change. doi:10.1007/s10584-012-0586-2

    Google Scholar 

  • Huang S, Krysanova V, Hatterman FF (2012b) Projection of low flow conditions in Germany under climate change by combining three RCMs and a regional hydrological mode. Acta Geophys. doi:10.2478/s11600-012-0065-1

    Google Scholar 

  • Hurkmans R, Terink W, Uijlenhoet R, Torfs PJJF, Jacob D, Troch PA (2010) Changes in streamflow dynamics in the Rhine basin under three high-resolution climate scenarios. J Clim 23(3):679–699. doi:10.1175/2009JCLI3066.1

    Article  Google Scholar 

  • IPCC (1996) Climate change 1995: the science of climate change. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 572

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, and New York, NY, USA, p 582

  • Jacob D (2001) A note on the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Kay A, Jones R, Reynard N (2006) RCM rainfall for UK flood frequency estimation. II. Climate change results. J Hydrol 318(1):163–172

    Article  Google Scholar 

  • Kay A, Davies H, Bell V, Jones R (2009) Comparison of uncertainty sources for climate change impacts: flood frequency in England. Clim Change 92(1):41–63

    Article  Google Scholar 

  • Kling H, Fuchs M, Paulin M (2012) Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol 424–425:264–277

    Article  Google Scholar 

  • Kosková R, Nemecková S, Hesse C, Jakubíková A, Broza V, Szolgay J (2007) Using of the soil parameterisation based on soil samples databases in rainfall-runoff modelling. In: Jakubíková A, Broza V, Szolgay J (eds) Proceedings of the Adolf Patera workshop “Extreme hydrological events in catchments”, Bratislava, 2007

  • Krysanova V, Meiner A, Roosaare J, Vasilyev A (1989) Simulation modelling of the coastal waters pollution from agricultural watersheds. Ecol Model 49:7–29

    Article  CAS  Google Scholar 

  • Krysanova V, Möller-Wohlfeil D, Becker A (1998) Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecol Model 106:261–289

    Article  CAS  Google Scholar 

  • Krysanova V, Wechsung F, Arnold J, Srinivasan R, Williams J (2000) PIK Report Nr. 69 “SWIM (soil and water integrated model), User Manual”, p 239

  • Lehner B, Doll P, Alcamo J, Henrichs T, Kaspar F (2006) Estimating the impact of global change on flood and drought risks in Europe: a continental, integrated analysis. Clim Change 75(3):273–299

    Article  Google Scholar 

  • Lenderink G, Buishand A, van Deursen W (2007) Estimates of future discharges of the river Rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11(3):1145–1159

    Article  Google Scholar 

  • Mauser W, Marke T, Stoeber S (2008) Climate change and water resources: scenarios of low-flow conditions in the upper Danube river basin. IOP Conf Ser Earth Environ Sci 4(1):012027. doi:10.1088/1755-1307/4/1/012027

    Article  Google Scholar 

  • Munich Re (2009) SystemAgro: sustainable crop insurance in response to climate change. http://www.munichre.com/app_pages/www/@res/pdf/reinsurance/business/non-life/systemagro/sustainable_crop_insurance_en.pdf

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I: a discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Petrow T, Merz B (2009) Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002. J Hydrol 371:129–141

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Raisanen J, Ruolokainen L, Ylhaisi J (2010) Weighting model results for improving best estimates of climate change. Clim Dyn. doi:10.1007/s00382-009-0659-8

    Google Scholar 

  • Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorol Z 17(4):347–348

    Article  Google Scholar 

  • Rojas R, Feyen L, Dosio A, Bavera D (2011) Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations. Hydrol Earth Syst Sci 15:2599–2620

    Article  Google Scholar 

  • Sangrey DA, Harrop-Williams KO, Kaliber JA (1984) Predicting ground-water response to precipitation. ASCE J Geotech Eng 110(7):957–975

    Article  Google Scholar 

  • Smedema LK, Rycroft DW (1983) Land drainage: planning and design of agricultural drainage systems. Cornell University Press, Ithaca p 376

    Google Scholar 

  • Stahl K, Hisdal H, Hannaford J, Tallaksen LM, van Lanen HAJ, Sauquet E, Demuth S, Fendekova M, Jódar J (2010) Streamflow trends in Europe: evidence from a dataset of near-natural catchments. Hydrol Earth Syst Sci 14:2367–2382

    Article  Google Scholar 

  • Svensson C, Kundzewicz WZ, Maurer T (2005) Trend detection in river flow series: 2. Flood and low-flow index series. Hydrol Sci J 50(5):824–881

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc Lond A 365:2053–2075

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2010) Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies. Geogr Compass 4(7):834–860

    Article  Google Scholar 

  • Thieken AH, Müller M, Kreibich H, Merz B (2005) Flood damage and influencing factors: new insights from the August 2002 flood in Germany. Water Resour Res 41:W12430. doi:10.1029/2005WR004177

    Article  Google Scholar 

  • Williams J, Renard K, Dyke P (1984) EPIC: a new model for assessing erosion’s effect on soil productivity. J Soil Water Conserv 38(5):381–383

    Google Scholar 

  • Zelenhasic E, Salvai A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaochun Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2731 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Krysanova, V. & Hattermann, F. Projections of climate change impacts on floods and droughts in Germany using an ensemble of climate change scenarios. Reg Environ Change 15, 461–473 (2015). https://doi.org/10.1007/s10113-014-0606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0606-z

Keywords

Navigation