Skip to main content

Advertisement

Log in

Ecophysiological vulnerability to climate change: water stress responses in four tree species from the central mountain region of Veracruz, Mexico

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Ecophysiological vulnerability can be understood as the degree of susceptibility or inability of an organism to adapt their physiological functions to ecological and environmental changes. Changes in water availability and water stress are critical for species, which may respond differentially to different precipitation events. We analyzed the response of leaf water potential (Ψ) and stomatal conductance (gS) to water stress to assess the ecophysiological vulnerability and evaluated the drought tolerance of four tree species from the central mountain region of Veracruz, Mexico: Alnus acuminata, Quercus xalapensis, Liquidambar styraciflua, and Pinus ayacahuite. Drought stress was imposed for 15 days (except for Q. xalapensis) and then watered for 25 days in order to evaluate the species recovery under three watering treatments: 16.67, 33.33, and 50 % field capacity. Individuals were screened throughout the experiment. Ψ and gS were measured daily showing significant decrement and differential recovery for each species. L. styraciflua and P. ayacahuite needed more water and more days to recover, whereas Q. xalapensis needed less water and resisted more days without water. We found A. acuminata as a drought-tolerant/avoider species. After analyzing the precipitation and temperature trends for the region, we found negative precipitation trends with an increase in consecutive dry days, and we found positive temperature trends. We also developed potential distribution maps for all the species in the region, and after analyzing the precipitation and temperature changes, the potential distribution maps, the resistance to water stress, the number of days before leaf drop, the Ψ and stomatal responses, and the water amount and number of days required to recover, we found L. styraciflua as the most vulnerable species and Q. xalapensis as the least vulnerable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ψ :

Leaf water potential

gS :

Stomatal conductance

E:

Transpiration

SLA:

Specific leaf area

References

  • Ackerly D (2004) Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol Monogr 74:25–44

    Article  Google Scholar 

  • Ackerman TL (1979) Germination and survival of perennial plant species in the Mojave Desert. Southwest Nat 24:399–408

    Article  Google Scholar 

  • Allen K (2003) Vulnerability reduction and the community-based approach. Natural Disasters and Development in a Globalising World, Ed. Pelling

  • Arroyo MTK, Armesto JJ, Squeo FA, Gutiérrez JR (1993) Global change: flora and vegetation of Chile. In: Mooney H, Fuentes E, Kronberg B (eds) Earth system responses to global change: contrasts between north and south America. Academic Press, New York, pp 239–263

    Google Scholar 

  • Attiwill PM, Clayton-Greene KA (1984) Studies of gas exchange and development in a subhumid woodland. J Ecol 72:85–294

    Article  Google Scholar 

  • Baldocchi D (1994) A comparative-study of mass and energy-exchange rates over a closed C3 (wheat) and an open C4 (corn) crop. 2. CO2 exchange and water-use efficiency. Agric Forest Meteorol 67(3/4):291–321

    Article  Google Scholar 

  • Baltzer JL, Davies SJ, Bunyavejchewin S, Noor NSM (2008) The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Funct Ecol 22:221–231

    Article  Google Scholar 

  • Barradas VL (1983) Capacidad de captación de agua a partir de la niebla en Pinus montezumae Lambert de la Región de las Grandes Montañas del Estado de Veracruz, México. Biótica 8:427–431

    Google Scholar 

  • Barradas VL, Cervantes-Pérez J, Ramos-Palacios R, Puchet-Anyul C, Vázquez-Rodriguez P, Granados-Ramirez R (2010) Meso-scale climate change in the central mountain region of Veracruz State, Mexico. In: Scatena FN, Bruijnzeel LA, Hamilton LS (eds) Tropical montane cloud forests. Science for Conservation and Management, Cambridge University Press, Cambridge, pp 549–556

    Google Scholar 

  • Barradas VL, Tapia-Vargas LM, Cervantes-Pérez J (2011) Consecuencias del cambio climático en la ecofisiología vegetal de un bosque templado en Veracruz. Rev Mex Cienc Agr 21:183–194

    Google Scholar 

  • Bongers F, Poorter L, Hawthorne WD (2004) The forests of Upper Guinea: gradients in large species composition. In: Poorter L (ed) Biodiversity of West African forests: an ecological atlas of woody plant species. CABI Wallingford, UK, pp 41–52

    Chapter  Google Scholar 

  • Breda N, Hue R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long term consequences. Ann For Sci 63:625–644

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173

    Article  CAS  Google Scholar 

  • Brooks N, Adger WN, Kelly PM (2005) The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Glob Environ Change 15:151–163

    Article  Google Scholar 

  • Buch M, Turcios M (2003) Vulnerabilidad Cocioambiental: Aplicaciones para Guatemala. Universidad Rafael Landivar. Facultad de Ciencias Ambientales y Agrícolas. Instituto de Agricultura, Recursos Naturales y Ambiente. Serie de documentos técnicos No. 9. Guatemala

  • Bunker DE, Carson WP (2005) Drought stress and tropical forest woody seedlings: effect on community structure and composition. J Ecol 93:794–806

    Article  Google Scholar 

  • Burgert I, Dunlop JWC (2011) Micromechanics of Cell Walls. In: Wojtaszek P (ed) Mechanical integration of plant cells and plants. Springer, Berlin, pp 27–52

    Chapter  Google Scholar 

  • Cao KF (2000) Water relations and gas exchange of tropical saplings during a prolonged drought in a Bornean heath forest, with reference to root architecture. J Trop Ecol 16:101

    Article  Google Scholar 

  • Cereceda P, Osses P, Larraín H, Farías M, Lagos M, Pinto R, Schemenauer RS (2002) Advective, orographic and radiation fog in the Tarapacá region, Chile. Atmos Res 64:261–271

    Article  Google Scholar 

  • Chen L, Zhang Z, Zeppel M, Liu C, Guo J, Zhu J, Zhang X, Zhang J, Zha T (2014) Response of transpiration to rain pulses for two tree species in a semiarid plantation. Int J Biometeorol. doi:10.1007/s00484-013-0761-9

    Google Scholar 

  • Comstock J, Mencuccini M (1998) Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T. and G.), a desert subshrub. Plant, Cell Environ 21:1029–1038

    Article  Google Scholar 

  • Coomes DA, Grubb PJ (2000) Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol Monogr 70:171–207

    Article  Google Scholar 

  • Curran TJ, Clarke PJ, Warwick NWM (2009) Water relations of woody plants on contrasting soils during drought: does edaphic compensation account for dry rainforest distribution? Aust J Bot 57(8):629–639

    Article  Google Scholar 

  • Curran TJ, Clarke PJ, Warwick NWM (2013) Drought survival of Australian rainforest seedlings is influenced by species’ evolutionary history and soil type. Aust J Bot 61:22–28

    Article  Google Scholar 

  • Dawson T (1998) Fog in the California redwood forest: ecosystem inputs and use by plants. Oecologia 117:476–485

    Article  Google Scholar 

  • Deines JM, Hellmann JJ, Curran TJ (2011) Traits associated with drought survival in three Australian tropical rainforest seedlings. Aust J Bot 59:620–628

    Article  Google Scholar 

  • Duursma RA, Kolari P, Peramaki M, Nikinmaa E, Hari P, Delzon S, Loustau D, Ilvesniemi H, Pumpanen J, Makela A (2008) Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance. Tree Physiol 28:265–276

    Article  CAS  Google Scholar 

  • Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol Evol 14:11–16

    Article  Google Scholar 

  • Ehleringer JR, Mooney HA (1983) Productivity of desert and Mediterranean-climate plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology IV. Springer, Berlin, pp 205–231

    Chapter  Google Scholar 

  • Ehleringer JR, Phillips SL, Schuste WFS, Sandquist DR (1991) Differential utilization of summer rains by desert plants: implications for competition and climate change. Oecologia 88:430–434

    Article  Google Scholar 

  • Engelbrecht BMJ, Kursar TA (2003) Comparative drought-resistance of seedlings of 28 species of co-occurring tropical woody plants. Oecologia 136:383–393

    Article  Google Scholar 

  • Engelbrecht BMJ, Comita LS, Condit R, Kursar TA, Tyree MT, Turner BL, Hubbell SP (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–82

    Article  CAS  Google Scholar 

  • Filella I, Penuelas J (2003) Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary history. Oecologia 137:51–61

    Article  Google Scholar 

  • Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88:964–977

    Article  Google Scholar 

  • Fuchs EE, Livingston JJ (1996) Hydraulic control of stomatal conductance in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco and alder (Alnus rubra (Bong.)) seedlings. Plant, Cell Environ 19:1091–1098

    Article  Google Scholar 

  • García-García F, Montañez RA (1991) Warm fog in eastern Mexico: a case study. Atmósfera 4:53–64

    Google Scholar 

  • Geissert D, Ibáñez A (2008) Calidad y ambiente físico-químico de los suelos. In: Manson RH, Hernández-Ortiz V, Gallina A, Mehltreter K (eds) Agrosistemas cafetaleros de Veracruz: Biodiversidad, Manejo y Conservación. Instituto de Ecología, A.C. (INECOL) e Instituto Nacional de Ecología (INE-SEMARNAT), México, pp 213–221

    Google Scholar 

  • Gentry AH (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Gerhardt K (1996) Effects of root competition and canopy openness on survival and growth of tree seedlings in a tropical seasonal dry forest. For Ecol Manag 82:33–48

    Article  Google Scholar 

  • Goldstein G, Sarmiento G, Meinzer F (1986) Patrones diarios y estacionales en las relaciones hídricas de árboles siempreverdes de la sabana tropical. Acta Oecol-Oec Plant 7:107–119

    Google Scholar 

  • Gómez-Pompa A (1978) Ecología de la vegetación del estado de Veracruz. CECSA, México

    Google Scholar 

  • Groom PK, Lamont BB (1997) Xerophytic implications of increased sclerophylly: interactions with water and light in Hakea psilorrhyncha seedlings. New Phytol 136:231–237

    Article  Google Scholar 

  • Gutiérrez JR (1993) Desertification effects on ephemeral plants in the Chilean coastal desert. Rev Chil Hist Nat 66:337–344

    Google Scholar 

  • Hadleyn F, Szarek SR (1981) Productivity of desert ecosystems. Bioscience 31:747–753

    Article  Google Scholar 

  • Hildebrandt A, Eltahir EAB (2006) Forest on the edge: seasonal cloud forest in Oman creates its own ecological niche. Geophys Res Lett 33:L11401

    Article  Google Scholar 

  • Holmgren M, Poorter L (2007) Does a ruderal strategy dominate the endemic flora of the West African forests? J Biogeogr 34:1100–1111

    Article  Google Scholar 

  • Hubbard R, Ryan M, Stiller V, Sperry J (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant, Cell Environ 24:113–121

    Article  Google Scholar 

  • Innes JL (1993) Forest health: its assessment and status. CAB, Wallingford

    Google Scholar 

  • IPCC (2001) Climate change 2001: impacts, adaptation, and vulnerability. In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex B, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Irvine J, Perks MP, Magnani F, Grace J (1998) The response of Pinus sylvestris to drought: stomatal control of transpiration and hydraulic conductance. Tree Physiol 18:393–402

    Article  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones R, Boer R (2003) Assessing current climate risks adaptation policy framework: a guide for policies to facilitate adaptation to climate change, UNDP. In: Brooks N (ed) Vulnerability, risk and adaptation: A conceptual framework, Tyndall Centre Working Paper No. 38, pp 1-16

  • King DA (1997) The functional significance of leaf angle in Eucalyptus. Aust J Bot 45:619–639

    Article  Google Scholar 

  • Lamont BB, Groom PK, Cowling RM (2002) High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol 16:403–412

    Article  Google Scholar 

  • Lara-García F (2000) Régimen termopluviométrico y aspectos microclimáticos y bioclimáticos de Xalapa, Veracruz. Dissertation, Universidad Veracruzana

  • Malhi Y, Wright J (2004) Spatial patterns and recent trends in the climate of tropical rainforest regions. Philos T Biol Sci 359:311–329

    Article  Google Scholar 

  • Markesteijn L (2010) Drought tolerance of tropical tree species. Functional traits, trade-offs and species distribution. Ph.D Dissertation, Wageningen University, Netherlands

  • Markesteijn L, Iraipi J, Bongers F, Poorter L (2010) Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. J Trop Ecol 26:497–508

    Article  Google Scholar 

  • Medina E, Francisco M (1994) Photosynthesis and water relations of savanna tree species differing in leaf phenology. Tree Physiol 14:1367–1382

    Article  Google Scholar 

  • Metzger MJ, Rounsevell MDA, Acosta-Michlik L, Leemans R, Schrotere D (2006) The vulnerability of ecosystem services to land use change. Agric Ecosyst Environ 114(1):69–95

    Article  Google Scholar 

  • Meza PE, Geissert D (2003) Estructura, agregación y porosidad en suelos forestales y cultivados de origen volcánico del Cofre de Perote, Veracruz. México. Foresta Veracruzana 5(2):57–60

    Google Scholar 

  • Myers BA, Neales TF (1984) Seasonal changes in the water relations of Eucalyptus behriana F.Muell. and E. microcarpa (Maiden) Maiden in the field. Aust J Bot 13:29–84

    Google Scholar 

  • Nasrallah HA, Brazel AJ, Balling RC (1990) Analysis of the Kuwait City urban heat island. Int J Climatol 10:401–405

    Article  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P et al (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Article  CAS  Google Scholar 

  • Oliveira RS, Christoffersen BO, Barros FV, Teodoro GS, Bittencourt P, Brum-Jr MM, Viani RAG (2014) Changing precipitation regimes and the water and carbon economies of trees. Theor Exp Plant Physiol. doi:10.1007/s40626-014-0007-1

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Polis GA (1991) Desert communities: an overview of patterns and processes. In: Polis GA (ed) The ecology of desert communities. The University of Arizona Press, Tucson, pp 1–26

    Google Scholar 

  • Poorter L (2005) Resource capture and use by tropical forest tree seedlings and their consequences for competition. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics: their role in the maintenance of species diversity. Cambridge University Press, Cambridge, pp 35–64

    Chapter  Google Scholar 

  • Poorter L, Hayashida-Oliver Y (2000) Effects of seasonal drought on gap and understory seedlings in a Bolivian moist forest. J Trop Ecol 16:481–498

    Article  Google Scholar 

  • Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. Biotropica 40:321–331

    Article  Google Scholar 

  • Poorter L, Bongers F, Kouamé FN, Hawthorne WD (2004) Biodiversity of West African forests: An ecological atlas of woody plant species. CABI, Wallingford

    Book  Google Scholar 

  • Reynolds JF, Virginia RA, Kemp PR, De Soyza AG, Tremmel DC (1999) Impact of drought on desert shrubs: effects of seasonality and degree of resource island development. Ecol Monogr 69:60–106

    Article  Google Scholar 

  • Rice KJ, Matzner SL, Byer W, Brown JR (2004) Patterns of tree dieback in Queensland, Australia: the importance of drought stress and the role of resistance to cavitation. Oecologia 139:190–198

    Article  Google Scholar 

  • Rundel PW, Dillon MO, Palma B, Mooney HA, Gulmon SL, Ehleringer JR (1991) The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso 13:1–49

    Google Scholar 

  • Salleo S, Nardini A, Lo Gullo MA (1997) Is sclerophylly of Mediterranean evergreens an adaptation to drought? New Phytol 135:603–612

    Article  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. P Natl Acad Sci USA 52:119–125

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    CAS  Google Scholar 

  • Shojl S, Nanzyo M, Dahlgren R (1993) Volcanic ash soils: Genesis, properties and utilization. Soil Science 21. Elsevier, Amsterdam

    Google Scholar 

  • Smith SD, Nobel PS (1986) Deserts. Photosynthesis. In: Baker NR, Long SP (eds) Contrasting environments. Elsevier Science Publishers B.V., Amsterdam, pp 13–62

    Google Scholar 

  • Smith SD, Monson RK, Anderson JE (1997) Physiological ecology of North American desert plants. Springer, Berlin

    Book  Google Scholar 

  • Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant, Cell Environ 25:251–263

    Article  Google Scholar 

  • Squeo FA, Ehleringer JR, Olivares N, Arancio G (1994) Variation in leaf level energy balance components of Encelia canescens along a precipitation gradient in north–central Chile. Rev Chil Hist Nat 67:143–155

    Google Scholar 

  • Squeo FA, Cavieres LA, Arancio G, Novoa JE, Matthei O, Marticorena C, Rodríguez R, Arroyo MTK, Muñoz M (1998) Biodiversidad de la flora vascular en la región de Antofagasta, Chile. Rev Chil Hist Nat 71:571–591

    Google Scholar 

  • Squeo FA, Olivares N, Olivares S, Pollastri A, Aguirre E, Aravena R, Jorquera C, Ehleringer JR (1999) Grupos funcionales en arbustos desérticos definidos en base a las fuentes de agua utilizadas. Gayana Botánica 56:1–15

    Google Scholar 

  • Ter Steege H, Pitman NC, Phillips OL, Chave J, Sabatier D, Duque A, Molino JF, Prevost MF, Spichiger R, Castellanos H (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    Article  Google Scholar 

  • Tobin MF, Lopez OR, Kursar TA (1999) Responses of tropical understory plants to a severe drought: tolerance and avoidance of water stress. Biotropica 31:570–578

    Article  Google Scholar 

  • Turner NC (1981) Techniques and experimental approaches for the measurement of the plant water status. Plant Soil 58:339–366

    Article  Google Scholar 

  • Tyree MT, Engelbrecht BMJ, Vargas G, Kursar TA (2003) Desiccation tolerance of five tropical seedlings in Panama. Relationship to a field assessment of drought performance. Plant Physiol 132:1439–1447

    Article  CAS  Google Scholar 

  • Valladares F, Vilagrosa A, Peñuelas J, Ogaya R, Camarero J, Corcuera L, Sisó S, Gil-Peregrín E (2004) Estrés hídrico: ecofisiología y escalas de la sequía. In: Valladares F (ed) Ecología del bosque mediterráneo en un mundo cambiante. Ministerio de Medio Ambiente, EGRAF, pp 163–190

    Google Scholar 

  • Walsh RPD (1996) Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J Trop Ecol 12:385–407

    Article  Google Scholar 

  • Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere. Springer, Berlin

    Book  Google Scholar 

  • Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227

    Article  CAS  Google Scholar 

  • Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493

    Article  Google Scholar 

  • Wright IJ et al (2004) The world-wide leaf economics spectrum. Nature 428:821–827

    Article  CAS  Google Scholar 

  • Wullschleger SD et al (2002) Plant water relations at elevated CO2—implications for water-limited environments. Plant, Cell Environ 25(2):319–331

    Article  Google Scholar 

  • Xu LK, Hsiao TC (2004) Predicted versus measured photosynthetic water-use efficiency of crop stands under dynamically changing field environments. J Exp Bot 55(407):2395–2411

    Article  CAS  Google Scholar 

  • Yu G et al (2004) Modeling the water use efficiency of soybean and maize plants under environmental stresses: application of a synthetic model of photosynthesis–transpiration based on stomatal behavior. J Plant Physiol 161(3):303–318

    Article  CAS  Google Scholar 

  • Yu G et al (2008) Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytol 177(4):927–937

    Article  CAS  Google Scholar 

  • Zeppel MJB (2013) Convergence of tree water use and hydraulic architecture in water-limited regions: a review and synthesis. Ecohydrology 6(5):889–900

    Google Scholar 

  • Zeppel MJB, Wilks J, Lewis JD (2013) Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosci Discuss 10:16645–16673. doi:10.5194/bgd-10-16645-2013

    Article  Google Scholar 

Download references

Acknowledgments

We thank Alejandro Morales, Juan Pablo Ruíz Córdova, Martín Bonifacio, and Alfredo Zamora for their help and support. Also, we thank Carlos G. Iglesias Delfín and Víctor Elías Luna Monterrojo from the Jardín Botánico Francisco Javier Clavijero, Instituto de Ecología A.C. for his help and assistance to get the plant material. We thank Dr. Timothy J. Curran for his advice and critical observations. A special thank to Dr. Mark Olson for all his support and guidance. We also want to thank Dr. Alexander Correa Metrio for his invaluable assistance and thoughtful contributions. We thank Mayank Puri for his critical review and observations. Also, we thank to the anonymous reviewers for their critical observations and in thoughtful contributions for the improving this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor L. Barradas.

Additional information

Editor: Wolfgang Cramer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esperón-Rodríguez, M., Barradas, V.L. Ecophysiological vulnerability to climate change: water stress responses in four tree species from the central mountain region of Veracruz, Mexico. Reg Environ Change 15, 93–108 (2015). https://doi.org/10.1007/s10113-014-0624-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-014-0624-x

Keywords

Navigation