Skip to main content
Log in

On Generic Well–posedness of Restricted Chebyshev Center Problems in Banach Spaces

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

Let ℬ (resp. \({\fancyscript K}\) , ℬ\({\fancyscript C}\), \({\fancyscript K}\) \({\fancyscript C}\)) denote the set of all nonempty bounded (resp. compact, bounded convex, compact convex) closed subsets of the Banach space X, endowed with the Hausdorff metric, and let G be a nonempty relatively weakly compact closed subset of X. Let ℬostand for the set of all F ∈ ℬ such that the problem (F,G) is well–posed. We proved that, if X is strictly convex and Kadec, the set \({\fancyscript K}\) \({\fancyscript C}\) ∩ℬo is a dense G δ –subset of \({\fancyscript K}\) \({\fancyscript C}\) \ G. Furthermore, if X is a uniformly convex Banach space, we will prove more, namely that the set ℬ\ℬo (resp.\({\fancyscript K}\) \ℬo, ℬ\({\fancyscript C}\) \ℬo, \({\fancyscript K}\) \({\fancyscript C}\) \ℬo) is σ–porous in ℬ (resp. \({\fancyscript K}\) , ℬ\({\fancyscript C}\), \({\fancyscript K}\) \({\fancyscript C}\)). Moreover, we prove that for most (in the sense of the Baire category) closed bounded subsets G of X, the set \({\fancyscript K}\) \ℬo is dense and uncountable in \({\fancyscript K}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dontchev, A., Zolezzi, T.: Well Posed Optimization Problems, Lecture Notes in Math., 1543, Springer-Verlag, Berlin, Heidelberg, 1993

  2. Borwein, J. M., Fitzpatrick, S.: Existence of nearest points in Banach spaces. Can. J. Math., 41, 702–720 (1989)

    MATH  Google Scholar 

  3. De Blasi, F. S., Myjak, J., Papini, P. L.: Porous sets in best approximation theory. J. London Math. Soc., 44(2), 135–142 (1991)

    MATH  MathSciNet  Google Scholar 

  4. De Blasi, F. S., Myjak, J.: On a generalized best approximation problem. J. Approx. Theory, 94, 54–72 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. De Blasi, F. S., Myjak, J.: Ambiguous loci in best approximation theory, in “Approximation Theory, Spline Functions and Applications” (S. P. Singh ed.), Kluwer Acad. Publ., Dordrecht, 341–349, 1992

  6. De Blasi, F. S., Myjak, J., Papini, P. L.: On mutually nearest and mutually furthest points of sets in Banach spaces. J. Approx. Theory, 70, 142–155 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Li, C.: On mutually nearest and mutually furthest points in reflexive Banach spaces. J. Approx. Theory, 103, 1–17 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garkavi, A. L.: The best possible net and the best possible cross-section of a set in a normed space. Izv. Akad. Nauk. USSR, 26, 87–106 (1962)

    MATH  MathSciNet  Google Scholar 

  9. Beer, G., Pai, D. V.: On convergence of convex sets and relative Chebyshev centers. J. Approx. Theory, 62, 147–169 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Li, C., Wang, X. H.: Lipschitz continuity of best approximations and Chebyshev centers. Chinese Science Bull., 43, 185–189 (1998)

    Article  MATH  Google Scholar 

  11. Li, C., Wang, X. H.: Almost Chebyshev set with respect to bounded subsets. Science in China, 40, 375–383 (1997)

    Article  MATH  Google Scholar 

  12. Pai, D. V., Nowroji, P. T.: On restricted centers of sets. J. Approx. Theory, 66, 170–189 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  13. Steckin, S. B.: Approximation properties of sets in normed linear spaces. Rev. Roumaine Math. Pures and Appl., 8, 5–18 (1963)

    MathSciNet  Google Scholar 

  14. Deville, R., Revalski, J. P.: Porosity of ill-posed problems. Proc. Amer. Math. Soc., 128, 1117–1124 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Georgiev, P. G.: The strong Ekeland variational principle, the strong drop theorem and applications. J. Math. Anal. Appl., 131, 1–21 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kenderov, P. S., Revalski, J. P.: Generic well-posedness of optimization problems and the Banach–Mazur game, in Recent Developments in Well-posed Variational Problems ( Lucchetti–Revalski, eds), Mathematics and Applications, Kluwer Acad. Publ., Dordrecht, 331, 117–136, 1995

  17. Lau, K. S.: Almost Chebyshev subsets in reflexive Banach spaces. Indiana Univ. Math. J., 27, 791–795 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, C.: Almost K-Chebyshev sets. Act. Math. Sinica, Chinese Series, 33(2), 251–259, (1990)

    MATH  Google Scholar 

  19. Li, C.: On well posedness of best simultaneous approximation problems in Banach spaces. Science in China (Ser. A), 44, 1558–1570 (2001)

    Article  MATH  Google Scholar 

  20. Shunmugaraj, P.: Well-set and well-posed minimization problems. Set-valued Analysis, 3, 281–294 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. De Blasi, F. S., Myjak, J.: Ambiguous loci of the nearest point mapping in Banach spaces. Arch. Math., 61, 377–384 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhivkov, N. V.: Compacta with dense ambiguous loci of metric projections and antiprojections. Proc. Amer. Math. Soc., 123, 3403–3411 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pheips, R. R.: Convex Functions, Monotone Operators and Differentiability, Lect Note in Math., 1364, Springer-Verlag, New York, 1989

  24. Preiss, D.: Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal., 91, 312–345 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  25. Amir, D., Ziegler, Z.: Relative Chebyshev centers in normed linear spaces. J. Approx. Theory, 29, 235–252 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Diestel, J.: Geometry of Banach Spaces–selected Topic, Lect Notes in Math, 485, Spring-Verlag, New York, 1975

  27. Radstrom, H.: An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc., 3, 165–169 (1952)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Additional information

The first author is supported in part by the National Natural Science Foundation of China (Grant No. 10271025). The second author is supported in part by Projects BFM 2000–0344 and FQM–127 of Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Lopez, G. On Generic Well–posedness of Restricted Chebyshev Center Problems in Banach Spaces. Acta Math Sinica 22, 741–750 (2006). https://doi.org/10.1007/s10114-005-0595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-005-0595-4

Keywords

MR (2000) Subject Classification

Navigation