Skip to main content
Log in

Interpolation and convergence of Bernstein-Bézier coefficients

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, two ways of the proof are given for the fact that the Bernstein-Bézier coefficients (BB-coefficients) of a multivariate polynomial converge uniformly to the polynomial under repeated degree elevation over the simplex. We show that the partial derivatives of the inverse Bernstein polynomial A n (g) converge uniformly to the corresponding partial derivatives of g at the rate 1/n. We also consider multivariate interpolation for the BB-coefficients, and provide effective interpolation formulas by using Bernstein polynomials with ridge form which essentially possess the nature of univariate polynomials in computation, and show that Bernstein polynomials with ridge form with least degree can be constructed for interpolation purpose, and thus a computational algorithm is provided correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bini, D. A., Gemignani, L., Winkler, J. R.: Structured matrix methods for CAGD: An application to computing the resultant of polynomials in the Bernstein basis. Numer. Linear Algebra Appl., 12, 685–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design, A.K. Peters, Wellesley, 1993

  3. Lorentz, G.: Bernstein Polynomials, Toronto Press, Toronto, 1953

    MATH  Google Scholar 

  4. Othman, W. A. M., Goldman, R. N.: The dual basis functions for the generalized Ball basis of odd degree. Comput. Aided Geom. Design, 14, 571–582 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhao, K., Sun, J.: Dual bases of multivariate Bernstein-Bézier polynomials. Comput. Aided Geom. Design, 5, 119–125 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, F. J., Xu, Z. B., Zheng, K. J.: Optimal approximation order for q-Stancu operators defined on a simplex. Acta Mathematica Sinica, Chinese Series, 51, 135–144 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Li, F. J., Xu, Z. B.: The approximation properties of generalized multivatiate Bernstein operators. Acta Mathematicae Applicatae Sinica, Chinese Series, 30, 955–960 (2008)

    Google Scholar 

  8. Barry, P. J., Goldman, R. N.: What Is the Natural Generalization of a Bézier Curve? In: Mathematical Methods in Computer Aided Geometric Design, Academic Press, Boston, 1989

    Google Scholar 

  9. Trump, W., Prautzsch, H.: Arbitrarily high degree elevation of Bézier representations. Comput. Aided Geom. Design, 13, 387–398 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Farouki, R., Rajan, V. T.: Algorithms for polynomials in Bernstein form. Comput. Aided Geom. Design, 5, 1–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen, E., Schumaker, L. L.: Rate of convergence of controlpolygons. Comput. Aided Geom. Design, 2, 305–322 (1985)

    Article  MathSciNet  Google Scholar 

  12. Farin, G.: Triangular Bernstein-Bézier patches. Comput. Aided Geom. Design, 3, 83–127 (1986)

    Article  MathSciNet  Google Scholar 

  13. Prautzsch, H.: On convex Bézier triangles. Math. Mod. Numer. Anal., 26, 23–26 (1992)

    MathSciNet  MATH  Google Scholar 

  14. Neamtu, M.: Subdividing multivariate polynomials over simplices in Bernstein-Bézier form without de Casteljau algorithm. In: Curves and Surface, Academic Press, Boston, 1991

    Google Scholar 

  15. Chui, C. K., Li, X.: Realization of neural networks with one hidden layer. In: Multivariate Approximation: From CAGD to Wavelets, World Scientific, Singapore, 1993

    Google Scholar 

  16. Sablonnière, P.: Discrete Bézier Curves and Surface. In: Mathematical Methods in Computer Aided Geometric Design II, Academic Press, Boston, 1992

    Google Scholar 

  17. Floater, M. S., Lyche, T.: Asymptotic convergence of degree-raising. Adv. Comput. Math., 12, 175–187 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moret, I., Novati, P.: Interpolating functions of matrices on of quasi-kernel polynomials. Numer. Linear Algebra Appl., 12, 337–353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. De Boor, C., Fix, G.: Spline interpolation by quasi-interpolants. J. Approx. Theory, 8, 19–45 (1973)

    Article  MATH  Google Scholar 

  20. Hakopian, H. A.: On a class of Hermite interpolation problems. Adv. Comput. Math., 12, 303–309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math., 2, 377–410 (2000)

    Article  MathSciNet  Google Scholar 

  22. De Boor, C.: On interpolation by radial polynomials. Adv. Comput. Math., 24, 143–153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. De Boor, C.: B-form Basis. In: Geometric Modeling: Algorithms and New Trends, SIAM, Philadelphia, 1987, 131–148

    Google Scholar 

  24. Gander, W.: Change of basis in polynomial interpolation. Numer. Linear Algebra Appl., 12, 769–778 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chung, K. C., Yao, T. H.: On lattices admitting unique Lagrange interpolations. SIAM J. Numer. Anal., 14, 735–741 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, S. L., Phillips, G. M.: Construction of lattices for Lagrange interpolation in projective space. Constr. Approx., 7, 283–297 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sauer, T., Xu, Y.: On multivariate Lagrange interpolation. Math. Comp., 64, 1147–1170 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Jun Li.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 61063020), Ningxia Ziran (Grant No. NZ0907) and 2009 Ningxia Gaoxiao Foundations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, F.J. Interpolation and convergence of Bernstein-Bézier coefficients. Acta. Math. Sin.-English Ser. 27, 1769–1782 (2011). https://doi.org/10.1007/s10114-011-8462-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-011-8462-y

Keywords

MR(2000) Subject Classification

Navigation