Skip to main content
Erschienen in: Knowledge and Information Systems 3/2019

17.05.2018 | Regular Paper

Self-taught support vector machines

verfasst von: Parvin Razzaghi

Erschienen in: Knowledge and Information Systems | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a new approach to self-taught learning is proposed. Classification in target task with limited labeled target data gets improved thanks to enormous unlabeled source data. The target and source data can be drawn from different distributions. In the previous approaches, covariate shift assumption is considered in which the marginal distributions p(x) change over domains and the conditional distributions p(y|x) remain the same. In our approach, we propose a new objective function which simultaneously learns a common space ℑ(.) where the conditional distributions over domains p(ℑ(x)|y) remain the same and learns robust SVM classifiers for target task using both source and target data in the new representation. Hence, in the proposed objective function, the hidden label of the source data is also incorporated. We applied the proposed approach on Caltech-256 and MSRC + LMO datasets and compared the performance of our algorithm to the available competing methods. Our method has a superior performance to the successful existing algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ablavsky VH, Becker CJ, Fua P (2012) Transfer learning by sharing support vectors: No. EPFL-REPORT-181360 Ablavsky VH, Becker CJ, Fua P (2012) Transfer learning by sharing support vectors: No. EPFL-REPORT-181360
2.
Zurück zum Zitat Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vaughan JW (2010) A theory of learning from different domains. Mach Learn 79:151–175MathSciNetCrossRef Ben-David S, Blitzer J, Crammer K, Kulesza A, Pereira F, Vaughan JW (2010) A theory of learning from different domains. Mach Learn 79:151–175MathSciNetCrossRef
3.
Zurück zum Zitat Bickel S, Bruckner M, Scheffer T (2007) Discriminative learning for differing training and test distributions. In: International conference on machine learning, pp 81–88 Bickel S, Bruckner M, Scheffer T (2007) Discriminative learning for differing training and test distributions. In: International conference on machine learning, pp 81–88
4.
Zurück zum Zitat Borgwardt KM, Gretton A, Rasch MJ, Kriegel HP, Scholkopf B, Smola AJ (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22:e49–e57CrossRef Borgwardt KM, Gretton A, Rasch MJ, Kriegel HP, Scholkopf B, Smola AJ (2006) Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22:e49–e57CrossRef
5.
Zurück zum Zitat Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: ACM international conference on image and video retrieval Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: ACM international conference on image and video retrieval
6.
Zurück zum Zitat Bruzzone L, Marconcini M (2010) Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Trans Pattern Anal Mach Intell 32:770–787CrossRef Bruzzone L, Marconcini M (2010) Domain adaptation problems: a DASVM classification technique and a circular validation strategy. IEEE Trans Pattern Anal Mach Intell 32:770–787CrossRef
7.
Zurück zum Zitat Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:21–27:27CrossRef Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27:21–27:27CrossRef
8.
Zurück zum Zitat Chen M, Weinberger KQ, Blitzer J (2011) Co-training for domain adaptation. In: Advances in neural information processing systems (NIPS), pp 2456–2464 Chen M, Weinberger KQ, Blitzer J (2011) Co-training for domain adaptation. In: Advances in neural information processing systems (NIPS), pp 2456–2464
9.
Zurück zum Zitat Chen Y, Guoping W, Shihai D (2003) Learning with progressive transductive support vector machine. Pattern Recogn Lett 24:1845–1855CrossRef Chen Y, Guoping W, Shihai D (2003) Learning with progressive transductive support vector machine. Pattern Recogn Lett 24:1845–1855CrossRef
11.
Zurück zum Zitat Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30MathSciNetMATH
12.
Zurück zum Zitat Duan L, Tsang IW, Xu D, Maybank SJ (2009) Domain transfer svm for video concept detection. In: IEEE conference on computer vision and pattern recognition, pp 1375–1381 Duan L, Tsang IW, Xu D, Maybank SJ (2009) Domain transfer svm for video concept detection. In: IEEE conference on computer vision and pattern recognition, pp 1375–1381
13.
Zurück zum Zitat Gammerman A, Vovk V, Vapnik V (1998) Learning by transduction. In: Proceedings of uncertainty in artificial intelligence, pp 148–156 Gammerman A, Vovk V, Vapnik V (1998) Learning by transduction. In: Proceedings of uncertainty in artificial intelligence, pp 148–156
14.
Zurück zum Zitat Germain P, Habrard A, Laviolette F, Morvant E (2013) A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers. In: International conference on machine learning, pp 738–746 Germain P, Habrard A, Laviolette F, Morvant E (2013) A PAC-Bayesian approach for domain adaptation with specialization to linear classifiers. In: International conference on machine learning, pp 738–746
15.
Zurück zum Zitat Germain P, Habrard A, Laviolette F, Morvant E (2016) A new PAC-Bayesian perspective on domain adaptation. In: International conference on machine learning Germain P, Habrard A, Laviolette F, Morvant E (2016) A new PAC-Bayesian perspective on domain adaptation. In: International conference on machine learning
16.
Zurück zum Zitat Gong M, Zhang K, Liu T, Tao D, Glymour C, Schölkopf B (2016) Domain adaptation with conditional transferable components. In: International conference on machine learning, pp 2839–2848 Gong M, Zhang K, Liu T, Tao D, Glymour C, Schölkopf B (2016) Domain adaptation with conditional transferable components. In: International conference on machine learning, pp 2839–2848
17.
Zurück zum Zitat Grant M, Boyd S (2012) CVX users’ guide Grant M, Boyd S (2012) CVX users’ guide
18.
Zurück zum Zitat Griffin G, Holub A, Perona P (2007) Caltech 256 object category dataset. Technical Report UCB/CSD-04-1366: California Institute of Technology Griffin G, Holub A, Perona P (2007) Caltech 256 object category dataset. Technical Report UCB/CSD-04-1366: California Institute of Technology
19.
Zurück zum Zitat Laviolette F, Marchand M, Roy JF (2011) From PAC-Bayes bounds to quadratic programs for majority votes. In: International conference on machine learning Laviolette F, Marchand M, Roy JF (2011) From PAC-Bayes bounds to quadratic programs for majority votes. In: International conference on machine learning
20.
Zurück zum Zitat Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Computer vision and pattern recognition, pp 2169–2678 Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Computer vision and pattern recognition, pp 2169–2678
21.
Zurück zum Zitat Li L, Jin X, Long M (2012) Topic correlation analysis for cross-domain text classification. In: AAAI conference on artificial intelligence Li L, Jin X, Long M (2012) Topic correlation analysis for cross-domain text classification. In: AAAI conference on artificial intelligence
22.
Zurück zum Zitat Li S, Li K, Fu Y (2017) Self-taught low-rank coding for visual learning. IEEE Trans Neural Netw Learn Syst 29:645–656MathSciNetCrossRef Li S, Li K, Fu Y (2017) Self-taught low-rank coding for visual learning. IEEE Trans Neural Netw Learn Syst 29:645–656MathSciNetCrossRef
23.
Zurück zum Zitat Liu C, Yuen J, Torralba A (2009) Nonparametric scene parsing: label transfer via dense scene alignment. In: Conference on computer vision and pattern recognition Liu C, Yuen J, Torralba A (2009) Nonparametric scene parsing: label transfer via dense scene alignment. In: Conference on computer vision and pattern recognition
24.
Zurück zum Zitat Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110CrossRef Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110CrossRef
25.
Zurück zum Zitat Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60:91–110CrossRef Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vision 60:91–110CrossRef
26.
Zurück zum Zitat Lu J, Behbood V, Hao P, Zuo H, Xue S, Zhang G (2015) Transfer learning using computational intelligence: a survey. Knowl Based Syst 80:14–23CrossRef Lu J, Behbood V, Hao P, Zuo H, Xue S, Zhang G (2015) Transfer learning using computational intelligence: a survey. Knowl Based Syst 80:14–23CrossRef
27.
28.
Zurück zum Zitat Margolis A (2011) A literature review of domain adaptation with unlabeled data. Washington University, St. Louis, pp 1–42 Margolis A (2011) A literature review of domain adaptation with unlabeled data. Washington University, St. Louis, pp 1–42
29.
Zurück zum Zitat Morvant E (2015) Domain adaptation of weighted majority votes via perturbed variation-based self-labeling. Pattern Recogn Lett 51:37–43CrossRef Morvant E (2015) Domain adaptation of weighted majority votes via perturbed variation-based self-labeling. Pattern Recogn Lett 51:37–43CrossRef
30.
Zurück zum Zitat Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans Pattern Anal Mach Intell 24:971–987CrossRefMATH Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Trans Pattern Anal Mach Intell 24:971–987CrossRefMATH
31.
Zurück zum Zitat Orabona F, Castellini C, Caputo B, Fiorilla E, Sandini G (2009) Model adaptation with least-squares SVM for hand prosthetics. In: IEEE international conference on robotics and automation Orabona F, Castellini C, Caputo B, Fiorilla E, Sandini G (2009) Model adaptation with least-squares SVM for hand prosthetics. In: IEEE international conference on robotics and automation
32.
Zurück zum Zitat Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef
33.
Zurück zum Zitat Quionero-Candela J, Sugiyama M, Schwaighofer A, Lawrence ND (2009) Dataset shift in machine learning. The MIT Press, Cambridge Quionero-Candela J, Sugiyama M, Schwaighofer A, Lawrence ND (2009) Dataset shift in machine learning. The MIT Press, Cambridge
34.
Zurück zum Zitat Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught learning: transfer learning from unlabeled data. In: International conference on machine learning, pp 759–766 Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught learning: transfer learning from unlabeled data. In: International conference on machine learning, pp 759–766
35.
Zurück zum Zitat Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2008) SimpleMKL. J Mach Learn Res 9:2491–2521MathSciNetMATH Rakotomamonjy A, Bach FR, Canu S, Grandvalet Y (2008) SimpleMKL. J Mach Learn Res 9:2491–2521MathSciNetMATH
36.
Zurück zum Zitat Shimodaira H (2000) Improving predictive inference under covariate shift by weighting the log-likelihood function. J Stat Plann Inference 90:227–244MathSciNetCrossRefMATH Shimodaira H (2000) Improving predictive inference under covariate shift by weighting the log-likelihood function. J Stat Plann Inference 90:227–244MathSciNetCrossRefMATH
37.
Zurück zum Zitat Shotton J, Johnson M, Cipolla R (2008) Semantic texton forests for image categorization and segmentation. In: Conference on computer vision and pattern recognition, pp 1–8 Shotton J, Johnson M, Cipolla R (2008) Semantic texton forests for image categorization and segmentation. In: Conference on computer vision and pattern recognition, pp 1–8
38.
Zurück zum Zitat Sugiyama M, Kawanabe M (2012) Machine learning in non-stationary environments: Introduction to covariate shift adaptation. MIT Press, CambridgeCrossRef Sugiyama M, Kawanabe M (2012) Machine learning in non-stationary environments: Introduction to covariate shift adaptation. MIT Press, CambridgeCrossRef
39.
Zurück zum Zitat Tommasi T, Orabona F, Caputo B (2010) Safety in numbers: learning categories from few examples with multi model knowledge transfer. In: Conference on computer vision and pattern recognition (CVPR), pp 3081–3088 Tommasi T, Orabona F, Caputo B (2010) Safety in numbers: learning categories from few examples with multi model knowledge transfer. In: Conference on computer vision and pattern recognition (CVPR), pp 3081–3088
40.
Zurück zum Zitat Tuzel O, Porikli F, Meer P (2007) Human detection via classification on riemannian manifold. In: Conference on computer vision and pattern recognition Tuzel O, Porikli F, Meer P (2007) Human detection via classification on riemannian manifold. In: Conference on computer vision and pattern recognition
41.
Zurück zum Zitat Wang H, Nie F, Huang H (2013) Robust and discriminative self-taught learning. In: International conference on machine learning, pp 298–306 Wang H, Nie F, Huang H (2013) Robust and discriminative self-taught learning. In: International conference on machine learning, pp 298–306
42.
Zurück zum Zitat Weijer JVD, Schmid C (2006) Coloring local feature extraction. In: European conference on computer vision, pp 334–348 Weijer JVD, Schmid C (2006) Coloring local feature extraction. In: European conference on computer vision, pp 334–348
Metadaten
Titel
Self-taught support vector machines
verfasst von
Parvin Razzaghi
Publikationsdatum
17.05.2018
Verlag
Springer London
Erschienen in
Knowledge and Information Systems / Ausgabe 3/2019
Print ISSN: 0219-1377
Elektronische ISSN: 0219-3116
DOI
https://doi.org/10.1007/s10115-018-1218-6

Weitere Artikel der Ausgabe 3/2019

Knowledge and Information Systems 3/2019 Zur Ausgabe