Skip to main content
Log in

Investigation on the gelation behavior of biodegradable poly(butylene succinate) during isothermal crystallization process

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The early stage of polymer crystallization may be viewed as physical gelation process, i.e., the phase transition of polymer from liquid to solid. Determination of the gel point is of significance in polymer processing. In this work, the gelation behavior of poly(butylene succinate) (PBS) at different temperatures has been investigated by rheological method. It was found that during the isothermal crystallization process of PBS, both the storage modulus (G′) and the loss modulus (G″) increase with time, and the rheological response of the system varies from viscous-dominated (G′ < G″) to elastic-dominated (G′ > G″), meaning the phase transition from liquid to solid. The physical gel point was determined by the intersection point of loss tangent curves measured under different frequencies. The gel time (t c) for PBS was found to increase with increasing crystallization temperature. The relative crystallinity of PBS at the gel point is very low (2.5%–8.5%) and increases with increasing the crystallization temperature. The low crystallinity of PBS at the gel point suggests that only a few junctions are necessary to form a spanning network, indicating that the network is “loosely” connected, in another word, the critical gel is soft. Due to the elevated crystallinity at gel point under higher crystallization temperature, the gel strength S g increases, while the relaxation exponent n decreases with increasing the crystallization temperature. These experimental results suggest that rheological method is an effective tool for verifying the gel point of biodegradable semi-crystalline polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lue, A. and Zhang, L.N., J. Phys. Chem. B, 2008, 112: 4488

    Article  CAS  Google Scholar 

  2. Ruan, D., Lue, A. and Zhang, L.N., Polymer, 2008, 49: 1027

    Article  CAS  Google Scholar 

  3. Horst, R.H. and Winter, H.H., Macromolecules, 2000, 33: 130

    Article  CAS  Google Scholar 

  4. Horst, R.H. and Winter, H.H., Macromolecules, 2000, 33: 7538

    Article  CAS  Google Scholar 

  5. Schwittay, C., Mours, M., Winter, H.H., Faraday Discuss., 1995, 101: 93

    Article  CAS  Google Scholar 

  6. Pogodina, N.V. and Winter, H.H., Macromolecules, 1998, 31: 8164

    Article  CAS  Google Scholar 

  7. Akpalu, I., Kielhorn, L., Hsiao, B.S., Stein, R.S., Russell, T.P., Egmond, J.V. and Muthukumar, M., Macromolecules, 1999, 32: 765

    Article  CAS  Google Scholar 

  8. Kelarakis, A., Mai, S.M., Booth, C. and Ryan, A.J., Polymer, 2005, 46: 2739

    Article  CAS  Google Scholar 

  9. Winter, H.H., Polym. Eng. Sci., 1987, 27: 1698

    Article  CAS  Google Scholar 

  10. Martin, J.E., Wilcoxon, J.P. and Adolf, D., Phys. Rev. A, 1987, 36: 1803

    Article  CAS  Google Scholar 

  11. Allain, C. and Amiel, C., Phys. Rev. Lett., 1986, 56: 1501

    Article  CAS  Google Scholar 

  12. Barton, J.M., Buist, G.J., Hamerton, I., Howlin, B.J., Jones, J.R. and Liu, S.Y., Polym. Bull., 1994, 33: 215

    Article  CAS  Google Scholar 

  13. Mijovic, J., Kim, J. and Slaby, J., J. Appl. Polym. Sci., 1984, 29: 1449

    Article  CAS  Google Scholar 

  14. Valles, E.M. and Macosko, C.W., Macromolecules, 1979, 12: 521

    Article  CAS  Google Scholar 

  15. Dai, L., Liu, X.X., Wang, X.Q. and Tong, Z., Acta Polymeric Sinica(in Chinese), 2010, (1): 102

  16. Chambon, F. and Winter, H.H., J. Rheol., 1987, 31: 683

    Article  CAS  Google Scholar 

  17. Winter, H.H. and Chambon, F., J. Rheol., 1986, 30: 367

    Article  CAS  Google Scholar 

  18. Chambon, F. and Winter, H.H., Polym. Bull., 1985, 13: 499

    Article  CAS  Google Scholar 

  19. Madbouly, S.A. and Otaigbe, J.U., Macromolecules, 2005, 38: 10178

    Article  CAS  Google Scholar 

  20. Hsiao, B.S., Chu, B., Kelarakis, A., Kyunghwan, Y., Somani, R.H. and Chen, X.M., Polymer, 2005, 46: 11591

    Article  Google Scholar 

  21. Liu, C.Y., Zhang, J., He, J.S. and Hu, G.H., Polymer, 2003, 44: 7529

    Article  CAS  Google Scholar 

  22. Boutahar, K., Carrot, C. and Guillet, J., Macromolecules, 1998, 31: 1921

    Article  CAS  Google Scholar 

  23. Muller, R., Gerard, E., Dugand, P., Rempp, P. and Gnanou, Y., Macromolecules, 1991, 24: 1321

    Article  CAS  Google Scholar 

  24. Tung, C.Y.M. and Dynes, P.J., J. Appl. Polym. Sci., 1982, 27: 569

    Article  CAS  Google Scholar 

  25. Lairez, D., Adam, M., Emery, J.R. and Durand, D., Macromolecules, 1992, 25: 286

    Article  CAS  Google Scholar 

  26. Masataka, S., Hirokazu, H. and Takashi, T., Rheol. Acta, 2007, 46: 957

    Article  Google Scholar 

  27. Scalan, J.C. and Winter, H.H., Macromolecules, 1991, 24: 47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du-jin Wang  (王笃金).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 50873112, 51063004) and China National Funds for Distinguished Young Scientists (No. 50925313).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Fl., Zhang, Xq., Ning, W. et al. Investigation on the gelation behavior of biodegradable poly(butylene succinate) during isothermal crystallization process. Chin J Polym Sci 29, 251–258 (2011). https://doi.org/10.1007/s10118-010-1014-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-010-1014-6

Keywords

Navigation