Skip to main content
Log in

Large amplitude oscillatory shear studies on the strain-stiffening behavior of gelatin gels

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Linear and nonlinear viscoelasticity of gelatin solutions was investigated by rheology. The dynamic mechanical properties during the sol-gel transition of gelatin followed the time-cure superposition. The fractal dimension d f of the critical gel was estimated as 1.76, which indicated a loose network. A high sol fraction w s = 0.61 was evaluated from the plateau modulus by semi-empirical models. Strain-stiffening behavior was observed under large amplitude oscillatory shear (LAOS) for the gelatin gel. The strain and frequency dependence of the minimum strain modulus G M, energy dissipation E d, and nonlinear viscoelastic parameter N E was illustrated in Pipkin diagrams and explained by the strain induced helix formation reported previously by others. The BST model described the strain-stiffening behavior of gelatin gel quite well, whereas the Gent and worm-like chain network models overestimated the strain-stiffening at large strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ward, A.G. and Courts, A., “Science and Technology of Gelatin”. Academic Press, London, 1977

    Google Scholar 

  2. te Nijenhuis, K., in “Thermoreversible Networks — Viscoelastic Properties and Structure of Gels”. Springer, Berlin/Heidelberg, 1997, vol. 130, chap. 10, p. 160

    Google Scholar 

  3. Harrington, W.F. and Rao, N.V., Biochemistry, 1970, 9(19): 3714

    CAS  Google Scholar 

  4. Djabourov, M., Leblond, J. and Papon, P., J. Phys. Fr., 1988, 49(2): 333

    CAS  Google Scholar 

  5. Joly-Duhamel, C., Hellio, D., Ajdari, A. and Djabourov, M., Langmuir, 2002, 18(19): 7158

    CAS  Google Scholar 

  6. Baziwane, D. and He, Q., Food Rev. Int., 2003, 19(4): 423

    CAS  Google Scholar 

  7. Olsen, D., Yang, C., Bodo, M., Chang, R., Leigh, S., Baez, J., Carmichael, D., Perälä, M., Hämäläinen, E.R., Jarvinen, M. and Polarek, J., Adv. Drug Delivery Rev., 2003, 55(12): 1547

    CAS  Google Scholar 

  8. Bonacucina, G., Cespi, M., Misici-Falzi, M. and Palmieri, G.F., J. Pharm. Sci., 2009, 98(1): 1

    CAS  Google Scholar 

  9. Lee, K.Y. and Mooney, D.J., Chem. Rev., 2001, 101(7): 1869

    CAS  Google Scholar 

  10. Gilbert, P.M., Havenstrite, K.L., Magnusson, K.E.G., Sacco, A., Leonardi, N.A., Kraft, P., Nguyen, N.K., Thrun, S., Lutolf, M.P. and Blau, H.M., Science, 2010, 329(5995): 1078

    CAS  Google Scholar 

  11. Discher, D.E., Janmey, P. and Wang, Y.-l., Science, 2005, 310(5751): 1139

    CAS  Google Scholar 

  12. Bot, A., van Amerongen, I.A., Groot, R.D., Hoekstra, N.L. and Agterof, W.G.M., Polym. Gels Networks, 1996, 4(3): 189

    CAS  Google Scholar 

  13. Groot, R.D., Bot, A. and Agterof, W.G.M., J. Chem. Phys., 1996, 104(22): 9202

    CAS  Google Scholar 

  14. McEvoy, H., Ross-Murphy, S.B. and Clark, A.H., Polymer, 1985, 26(10): 1483

    CAS  Google Scholar 

  15. Blatz, P.J., Sharda, S.C. and Tschoegl, N.W., Trans. Soc. Rheol., 1974, 18(1): 145

    CAS  Google Scholar 

  16. Treloar, L.R.G., “The physics of rubber elasticity”. Oxford University Press, Oxford, 2005

    Google Scholar 

  17. Mooney, M., J. Appl. Phys., 1940, 11(9): 582

    Google Scholar 

  18. Rivlin, R.S., Phil. Trans. R. Soc. Lond. Ser. A, 1948, 241(835): 379

    Google Scholar 

  19. Gent, A.N., Rubber Chem. Technol., 1996, 69(1): 59

    CAS  Google Scholar 

  20. Ogden, R.W., Proc. R. Soc. A, 1972, 326(1567): 565

    CAS  Google Scholar 

  21. James, H.M. and Guth, E., J. Chem. Phys., 1943, 11(10): 455

    CAS  Google Scholar 

  22. Wang, M.C. and Guth, E., J. Chem. Phys., 1952, 20(7): 1144

    Google Scholar 

  23. Flory, P.J. and Rehner, J., J. Chem. Phys., 1943, 11(11): 512

    CAS  Google Scholar 

  24. Treloar, L.R.G., Trans. Faraday Soc., 1946, 42(0): 83

    Google Scholar 

  25. Arruda, E.M. and Boyce, M.C., J. Mech. Phys. Solids, 1993, 41(2): 389

    CAS  Google Scholar 

  26. Wu, P.D. and Van Der Giessen, E., J. Mech. Phys. Solids, 1993, 41(3): 427

    CAS  Google Scholar 

  27. Ronca, G. and Allegra, G., J. Chem. Phys., 1975, 63(11): 4990

    CAS  Google Scholar 

  28. Flory, P.J., Gordon, M. and McCrum, N.G., Proc. R. Soc. A, 1976, 351(1666): 351

    CAS  Google Scholar 

  29. Heinrich, G., Straube, E. and Helmis, G., in “Polymer Physics”. Springer, Berlin Heidelberg, 1988, vol. 85, chap. 2, p. 33

    CAS  Google Scholar 

  30. Miehe, C., Göktepe, S. and Lulei, F., J. Mech. Phys. Solids, 2004, 52(11): 2617

    CAS  Google Scholar 

  31. Boyce, M.C. and Arruda, E.M., Rubber Chem. Technol., 2000, 73(3): 504

    CAS  Google Scholar 

  32. Gottlieb, M. and Gaylord, R.J., Polymer, 1983, 24(12): 1644

    CAS  Google Scholar 

  33. Marckmann, G. and Verron, E., Rubber Chem. Technol., 2006, 79(5): 835

    CAS  Google Scholar 

  34. Onck, P.R., Koeman, T., van Dillen, T. and van der Giessen, E., Phys. Rev. Lett., 2005, 95(17): 178102

    CAS  Google Scholar 

  35. Heussinger, C., Schaefer, B. and Frey, E., Phys. Rev. E, 2007, 76(3): 031906

    Google Scholar 

  36. Stein, A.M., Vader, D.A., Weitz, D.A. and Sander, L.M., Complexity, 2011, 16(4): 22

    Google Scholar 

  37. Vader, D., Kabla, A., Weitz, D. and Mahadevan, L., PLoS ONE, 2009, 4(6): e5902

    Google Scholar 

  38. Motte, S. and Kaufman, L.J., Biopolymers, 2013, 99(1): 35

    CAS  Google Scholar 

  39. Haut, R.C. and Little, R.W., J. Biomech., 1972, 5(5): 423

    CAS  Google Scholar 

  40. Pioletti, D.P., Rakotomanana, L.R., Benvenuti, J.F. and Leyvraz, P.F., J. Biomech., 1998, 31(8): 753

    CAS  Google Scholar 

  41. Semmrich, C., Larsen, R.J. and Bausch, A.R., Soft Matter, 2008, 4(8): 1675

    CAS  Google Scholar 

  42. Sanjeevi, R., Somanathan, N. and Ramaswamy, D., J. Biomech., 1982, 15(3): 181

    CAS  Google Scholar 

  43. Wilking, J.N. and Mason, T.G., Phys. Rev. E, 2008, 77(5): 055101

    Google Scholar 

  44. Hyun, K., Wilhelm, M., Klein, C.O., Cho, K.S., Nam, J.G., Ahn, K.H., Lee, S.J., Ewoldt, R.H. and McKinley, G.H., Prog. Polym. Sci., 2011, 36(12): 1697

    CAS  Google Scholar 

  45. Wilhelm, M., Macromol. Mater. Eng., 2002, 287(2): 83

    CAS  Google Scholar 

  46. Wilhelm, M., Maring, D. and Spiess, H.W., Rheol. Acta, 1998, 37(4): 399

    CAS  Google Scholar 

  47. Cho, K.S., Hyun, K., Ahn, K.H. and Lee, S.J., J. Rheol., 2005, 49(3): 747

    CAS  Google Scholar 

  48. Ewoldt, R.H., Hosoi, A.E. and McKinley, G.H., J. Rheol., 2008, 52(6): 1427

    CAS  Google Scholar 

  49. Yu, W., Wang, P. and Zhou, C., J. Rheol., 2009, 53(1): 215

    CAS  Google Scholar 

  50. Ewoldt, R.H., Hosoi, A.E. and McKinley, G.H., Integr. Comp. Biol., 2009, 49(1): 40

    Google Scholar 

  51. Yu, W., Du, Y. and Zhou, C., J. Rheol., 2013, 57(4): 1147

    CAS  Google Scholar 

  52. Sun, W., Yang, Y., Wang, T., Liu, X., Wang, C. and Tong, Z., Polymer, 2011, 52(6): 1402

    CAS  Google Scholar 

  53. Shu, R., Sun, W., Wang, T., Wang, C., Liu, X. and Tong, Z., Colloids Surf. A, 2013, 434(0): 220

    Google Scholar 

  54. Shu, R., Sun, W., Liu, Y., Wang, T., Wang, C., Liu, X. and Tong, Z., Colloids Surf. A, 2013, 436(0): 912

    Google Scholar 

  55. Pipkin, A.C., “Lectures on Viscoelasticity Theory (Applied Mathematical Sciences)”. Springer, 1972, p. 180

    Google Scholar 

  56. Yoshimura, K., Terashima, M., Hozan, D. and Shirai, K., J. Agric. Food Chem., 2000, 48(3): 685

    CAS  Google Scholar 

  57. Boedtker, H. and Doty, P., J. Phys. Chem., 1954, 58(11): 968

    CAS  Google Scholar 

  58. Csonka, F.A., Murphy, J.C. and Jones, D.B., J. Am. Chem. Soc., 1926, 48(3): 763

    CAS  Google Scholar 

  59. Laurent, J.L., Janmey, P.A. and Ferry, J.D., J. Rheol., 1980, 24(1): 87

    CAS  Google Scholar 

  60. Ewoldt, R., Winter, P., Maxey, J. and McKinley, G., Rheol. Acta, 2010, 49(2): 191

    CAS  Google Scholar 

  61. Ferry, J.D., “Viscoelastic properties of polymers”. John Wiley & Sons, ed. 3rd, 1980

    Google Scholar 

  62. Winter, H.H. and Chambon, F., J. Rheol., 1986, 30(2): 367

    CAS  Google Scholar 

  63. Chambon, F. and Winter, H.H., Polym. Bull., 1985, 13(6): 499

    CAS  Google Scholar 

  64. Adolf, D. and Martin, J.E., Macromolecules, 1990, 23(15): 3700

    CAS  Google Scholar 

  65. Schultz, K.M., Baldwin, A.D., Kiick, K.L. and Furst, E.M., ACS Macro Lett., 2012, 1(6): 706

    CAS  Google Scholar 

  66. Tixier, T., Tordjeman, P., Cohen-Solal, G. and Mutin, P.H., J. Rheol., 2004, 48(1): 39

    CAS  Google Scholar 

  67. Larsen, T.H. and Furst, E.M., Phys. Rev. Lett., 2008, 100(14): 146001

    Google Scholar 

  68. Larsen, T.H., Rajagopal, K., Schneider, J.P. and Furst, E.M., AIP Conf. Proc., 2008, 1027(1): 1090

    CAS  Google Scholar 

  69. Corrigan, A. and Donald, A., Eur. Phys. J. E, 2009, 28(4): 457

    CAS  Google Scholar 

  70. Corrigan, A.M. and Donald, A.M., Langmuir, 2009, 25(15): 8599

    CAS  Google Scholar 

  71. Corrigan, A.M. and Donald, A.M., Soft Matter, 2010, 6(17): 4105

    CAS  Google Scholar 

  72. Gong, Z., Yang, Y., Ren, Q., Chen, X. and Shao, Z., Soft Matter, 2012, 8(10): 2875

    CAS  Google Scholar 

  73. Groot, R.D. and Agterof, W.G.M., Macromolecules, 1995, 28(18): 6284

    CAS  Google Scholar 

  74. Bot, A., Wientjes, R.H.W. and de Haas, K.H., Imaging Sci. J., 1997, 45: 191

    CAS  Google Scholar 

  75. Cumper, C.W.N. and Alexander, A.E., Aust. J. Sci. Res, Ser. A: Phys.. Sci., 1952, 5(1): 153

    Google Scholar 

  76. Gilsenan, P.M. and Ross-Murphy, S.B., Food Hydrocolloids, 2000, 14(3): 191

    CAS  Google Scholar 

  77. Gilsenan, P.M. and Ross-Murphy, S.B., J. Rheol., 2000, 44(4): 871

    CAS  Google Scholar 

  78. Sarabia, A.I., Gómez-Guillén, M.C. and Montero, P., Food Chem., 2000, 70(1): 71

    CAS  Google Scholar 

  79. Fernández-Díaz, M.D., Montero, P. and Gómez-Guillén, M.C., Food Chem., 2001, 74(2): 161

    Google Scholar 

  80. Haug, I.J., Draget, K.I. and Smidsrød, O., Food Hydrocolloids, 2004, 18(2): 203

    CAS  Google Scholar 

  81. Ferry, I.J.D. and Eldridge, J.E., J. Phys. Colloid Chem., 1948, 53(1): 184

    Google Scholar 

  82. Eldridge, J.E. and Ferry, J.D., J. Phys. Chem., 1954, 58(11): 992

    CAS  Google Scholar 

  83. Sheppard, S.E. and Sweet, S.S., J. Am. Chem. Soc., 1921, 43(3): 539

    CAS  Google Scholar 

  84. Hsu, S.h. and Jamieson, A.M., Polymer, 1993, 34(12): 2602

    CAS  Google Scholar 

  85. te Nijenhuis, K., Makromol. Chem., 1991, 192(3): 603

    Google Scholar 

  86. Ng, T.S.K., McKinley, G.H. and Ewoldt, R.H., J. Rheol., 2011, 55(3): 627

    CAS  Google Scholar 

  87. Kang, H., Wen, Q., Janmey, P.A., Tang, J.X., Conti, E. and MacKintosh, F.C., J. Phys. Chem. B, 2009, 113(12): 3799

    CAS  Google Scholar 

  88. Darvish, K.K. and Crandall, J.R., Med. Eng. Phys., 2001, 23(9): 633

    CAS  Google Scholar 

  89. Dokos, S., LeGrice, I.J., Smaill, B.H., Kar, J. and Young, A.A., J. Biomech. Eng., 2000, 122(5): 471

    CAS  Google Scholar 

  90. Storm, C., Pastore, J.J., MacKintosh, F.C., Lubensky, T.C. and Janmey, P.A., Nature, 2005, 435(7039): 191

    CAS  Google Scholar 

  91. Kutter, S. and Terentjev, E.M., Eur. Phys. J. E, 2002, 8(5): 539

    CAS  Google Scholar 

  92. Courty, S., Gornall, J.L. and Terentjev, E.M., Biophys. J., 2006, 90(3): 1019

    CAS  Google Scholar 

  93. Courty, S., Gornall, J.L. and Terentjev, E.M., Proc. Natl. Acad. Sci. U. S. A., 2005, 102(38): 13457

    CAS  Google Scholar 

  94. Papon, A., Merabia, S., Guy, L., Lequeux, F., Montes, H., Sotta, P. and Long, D.R., Macromolecules, 2012, 45(6): 2891

    CAS  Google Scholar 

  95. Mallik, A.K., Kher, V., Puri, M. and Hatwal, H., J. Sound Vibration, 1999, 219(2): 239

    Google Scholar 

  96. Palmer, J.S. and Boyce, M.C., Acta Biomater., 2008, 4(3): 597

    Google Scholar 

  97. Horgan, C.O. and Saccomandi, G., Biomech. Model. Mechanobiol., 2003, 1(4): 251

    CAS  Google Scholar 

  98. Horgan, C.O. and Saccomandi, G., Math. Mech. Solids, 2002, 7(4): 353

    Google Scholar 

  99. Horgan, C. and Saccomandi, G., J. Elasticity, 2002, 68(1): 167

    Google Scholar 

  100. Beatty, M.F., J. Elasticity, 2003, 70(1): 65

    Google Scholar 

  101. Pezron, I., Djabourov, M. and Leblond, J., Polymer, 1991, 32(17): 3201

    CAS  Google Scholar 

  102. MacKintosh, F.C., Käs, J. and Janmey, P.A., Phys. Rev. Lett., 1995, 75(24): 4425

    CAS  Google Scholar 

  103. Ma, J., Narayanan, H., Garikipati, K., Grosh, K. and Arruda, E.M., in “IUTAM Symposium on Cellular, Molecular and Tissue Mechanics”, Garikipati, K., Arruda, E. M., Eds. Springer Netherlands, 2010, vol. 16, p. 3

    Google Scholar 

  104. Gouinlock, E.V., Flory, P.J. and Scheraga, H.A., J. Polym. Sci., 1955, 16(82): 383

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Tong  (童真).

Additional information

This work was financially supported by the National Natural Science Foundation of China (No. 21204023), the National Basic Research Program of China (973 Program, 2012CB821504) and the Open Fund of the State Key Laboratory of Pulp and Paper Engineering (201346).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Wx., Huang, Lz., Yang, Yr. et al. Large amplitude oscillatory shear studies on the strain-stiffening behavior of gelatin gels. Chin J Polym Sci 33, 70–83 (2015). https://doi.org/10.1007/s10118-015-1559-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-015-1559-5

Keywords

Navigation