Skip to main content
Log in

Effect of Star-shaped chain architectures on the polylactide stereocomplex crystallization behaviors

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Linear and star-shaped polylactides (PLA) with similar molecular weights of each arm are synthesized via ring-opening polymerization of LA with 3-butyn-1-ol and pentaerythritol as initiators, respectively. By solution blending of equivalent mass of poly(L-lactic acid)s (PLLAs) and poly(D-lactic acid)s (PDLAs), perfect PLA stereocomplexes (scPLAs) are prepared and confirmed by WAXD and FTIR analysis. Effect of chain architectures on stereocomplex crystallization is investigated by studying the non-isothermal and isothermal crystallization of linear and star-shaped polylactide stereocomplexes. In dynamic DSC and POM test, star-shaped PLLA (4sPLLA)/PDLA and PLLA/star-shaped PDLA (4sPDLA) stereocomplexes reach rapid crystallization and higher crystallinity due to larger spherulite density of star-shaped chain and excellent chain mobility of linear chain. In isothermal crystallization test, much faster crystallization and less crystallization half-time is obtained with the increase of star-shaped chain. Meanwhile, 4sPLLA/PDLA and PLLA/4sPDLA are found to have the highest crystallinity, suggesting limitation of too much star-shaped chain for 4sPLLA/4sPDLA and restriction of linear chain in nucleation capacity for PLLA/PDLA. The results reveal that star-shaped chain has an important influence on the crystallization of scPLAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, L.F., Cheng, J., Tian, X.J. and Zhang, R.L., Chinese J. Polym. Sci., 2015, 33(3): 499

    Article  CAS  Google Scholar 

  2. Solarski, S., Mahjoubi, F., Ferreira, M., Devaux, E., Bachelet, P. and Bourbigot, S., J. Mater. Sci., 2007, 42(13): 5108

    Article  Google Scholar 

  3. Xiang, S., Jun, S., Li, G., Bian, X.C., Feng, L.D., Chen, X.S., Liu, F.Q. and Huang, S.Y., Chinese J. Polym. Sci., 2016, 34(1): 69

    Article  CAS  Google Scholar 

  4. Oh, J.K., Soft Matter, 2011, 7(11): 5100

    Article  Google Scholar 

  5. Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., Jardini, A.L. and Maciel Filho, R., Biotechnol. Adv., 2012, 30(1): 323

    Article  Google Scholar 

  6. Saeidlou, S., Huneault, M.A., Li, H. and Park, C.B., Prog. Polym. Sci., 2012, 37(12): 1659

    Article  Google Scholar 

  7. Li, Y., Wang, Y., Liu, L., Han, L., Xiang, F. and Zhou, Z., J. Polym. Sci., Part B: Polym. Phys., 2009, 47(3): 328

    Article  CAS  Google Scholar 

  8. Hashima, K., Nishitsuji, S. and Inoue, T., Polymer, 2010, 51(17): 3935

    Article  Google Scholar 

  9. Lim, L.T., Auras, R. and Rubino, M., Prog. Polym. Sci., 2008, 33(8): 824

    Article  Google Scholar 

  10. Na, B., Tian, N., Lv, R., Zou, S., Xu, W. and Fu, Q., Macromolecules, 2010, 2(43): 1156

    Article  Google Scholar 

  11. Harris, A.M. and Lee, E.C., J. Appl. Polym. Sci., 2008, 107(4): 2248

    Article  Google Scholar 

  12. Schmidt, S.C. and Hillmyer, M.A., J. Polym. Sci., Part B: Polym. Phys., 2001, 39(3): 302

    Article  Google Scholar 

  13. Tsuji, H., Takai, H., Fukuda, N. and Takikawa, H., Macromol. Mater. Eng., 2006, 291(4): 325

    Article  CAS  Google Scholar 

  14. Fehri, S., Cinelli, P., Coltelli, M.B., Anguillesi, I. and Lazzeri, A., Int. J. Chem. Eng. Appl., 2016, 7(2): 85

    CAS  Google Scholar 

  15. Zhang, Y., Chinese J. Polym. Sci., 2013, 31(9): 1276

    Article  CAS  Google Scholar 

  16. Yin, H.Y., Wei, X.F., Bao, R.Y., Dong, Q.X., Liu, Z.Y., Yang, W., Xie, B.H. and Yang, M.B., CrystEngComm, 2015, 17(23): 4334

    Article  CAS  Google Scholar 

  17. Pillin, I., Montrelay, N. and Grohens, Y., Polymer, 2006, 47(13): 4676

    Article  CAS  Google Scholar 

  18. Xiao, H., Lu, W. and Yeh, J.T., J. Appl. Polym. Sci., 2009, 113(1): 112

    Article  CAS  Google Scholar 

  19. Kulinski, Z. and Piorkowska, E., Polymer, 2005, 46(23): 10290

    Article  CAS  Google Scholar 

  20. Zhou, J., Jiang, Z., Wang, Z., Zhang, J., Li, J., Li, Y., Zhang, J., Chen, P. and Gu, Q., RSC Adv., 2013, 3(40): 18464

    Article  CAS  Google Scholar 

  21. Pan, P., Liang, Z., Zhu, B., Dong, T. and Inoue, Y., Macromolecules, 2009, 42(9): 3375

    Article  Google Scholar 

  22. Yang, S., Wu, Z.H., Yang, W. and Yang, M.B., Polym. Test., 2008, 27(8): 958

    Article  Google Scholar 

  23. Ikada, Y., Jamshidi, K., Tsuji, H. and Hyon, S.H., Macromolecules, 1987, 20(4): 904

    Article  CAS  Google Scholar 

  24. Okihara, T., Tsuji, M., Kawaguchi, A., Katayama, K.I., Tsuji, H., Hyon, S.H. and Ikada, Y., J. Macromol. Sci., Part B: Phys., 1991, 30(1–2): 119

    Article  CAS  Google Scholar 

  25. Zhang, J., Sato, H., Tsuji, H., Noda, I. and Ozaki, Y., Macromolecules, 2005, 38(5): 1822

    Article  CAS  Google Scholar 

  26. Fan, Y., Nishida, H., Shirai, Y., Tokiwa, Y. and Endo, T., Polym. Degrad. Stab., 2004, 86(2): 197

    Article  CAS  Google Scholar 

  27. Regnell Andersson, S., Hakkarainen, M., Inkinen, S., Södergård, A. and Albertsson, A.C., Biomacromolecules, 2012, 13(4): 1212

    Article  CAS  Google Scholar 

  28. Tsuji, H., Macromol. Biosci., 2005, 5(7): 569

    Article  CAS  Google Scholar 

  29. Cheerarot, O. and Baimark, Y., J. Chem., 2015, DOI: 10.1155/2015/206123

    Google Scholar 

  30. Wang, Y. and Mano, J.F., J. Appl. Polym. Sci., 2008, 107(3): 1621

    Article  CAS  Google Scholar 

  31. Brochu, S., Prud'Homme, R.E., Barakat, I. and Jerome, R., Macromolecules, 1995, 28(15): 5230

    Article  CAS  Google Scholar 

  32. Furuhashi, Y., Kimura, Y., Yoshie, N. and Yamane, H., Polymer, 2006, 47(16): 5965

    Article  CAS  Google Scholar 

  33. Tsuji, H., Adv. Drug. Del. Rev., 2016, 107: 97

    Article  CAS  Google Scholar 

  34. Inkinen, S., Stolt, M. and Södergård, A., Polym. Adv. Technol., 2011, 22(12): 1658

    Article  CAS  Google Scholar 

  35. Shao, J., Sun, J., Bian, X., Cui, Y., Li, G. and Chen, X., J. Phys. Chem. B., 2012, 116(33): 9983

    Article  CAS  Google Scholar 

  36. Biela, T., Duda, A. and Penczek, S., Macromolecules, 2006, 39(11): 3710

    Article  CAS  Google Scholar 

  37. Nouri, S., Dubois, C. and Lafleur, P.G., Polymer, 2015, 67: 228

    Article  Google Scholar 

  38. Tan, B.H., Hussain, H., Lin, T.T., Chua, Y.C., Leong, Y.W., Tjiu, W.W., Wong, P.K. and He, C.B., Langmuir, 2011, 27(17): 10538

    Article  CAS  Google Scholar 

  39. Purnama, P., Jung, Y. and Kim, S.H., Polym. Degrad. Stab., 2013, 98(5): 1097

    Article  CAS  Google Scholar 

  40. Gardella, L., Basso, A., Prato, M. and Monticelli, O., RSC Adv., 2015, 5(58): 46774

    Article  CAS  Google Scholar 

  41. Sakamoto, Y. and Tsuji, H., Macromol. Chem. Phys., 2013, 214(7): 776

    Article  CAS  Google Scholar 

  42. Geschwind, J., Rathi, S., Tonhauser, C., Schömer, M., Hsu, S.L., Coughlin, E.B. and Frey, H., Macromol. Chem. Phys., 2013, 214(13): 1434

    Article  CAS  Google Scholar 

  43. Nagahama, K., Nishimura, Y., Ohya, Y. and Ouchi, T., Polymer, 2007, 48(9): 2649

    Article  CAS  Google Scholar 

  44. Nagahama, K., Fujiura, K., Enami, S., Ouchi, T. and Ohya, Y., J. Polym. Sci., Part A: Polym. Chem., 2008, 46(18): 6317

    Article  CAS  Google Scholar 

  45. Nederberg, F., Appel, E., Tan, J.P.K., Kim, S.H., Fukushima, K., Sly, J. and Hedrick, J.L., Biomacromolecules, 2009, 10(6): 1460

    Article  CAS  Google Scholar 

  46. Shao, J., Tang, Z., Sun, J., Li, G. and Chen, X., J. Polym. Sci., Part B: Polym. Phys., 2014, 52(23): 1560

    Article  CAS  Google Scholar 

  47. Tsuji, H., Matsumura, N. and Arakawa, Y., J. Phys. Chem. B., 2016, 120(6): 1183

    Article  CAS  Google Scholar 

  48. Tsuji, H. and Tajima, T., Macromol. Mater. Eng., 2014, 299(9): 1089

    CAS  Google Scholar 

  49. Bao, J., Han, L., Shan, G., Bao, Y. and Pan, P., J. Phys. Chem. B., 2015, 119(39): 12689

    Article  CAS  Google Scholar 

  50. Long, L., Zhao, J., Li, K., He, L., Qian, X., Liu, C., Wang, L., Yang, X., Sun, J., Ren, Y., Kang, C. and Yuan, X., Mater. Chem. Phys., 2016, 180: 184

    Article  CAS  Google Scholar 

  51. Fischer, E.W., Sterzel, H.J. and Wegner, G., Colloid. Polym. Sci., 1973, 251(11): 980

    CAS  Google Scholar 

  52. Tsuji, H., Horii, F., Nakagawa, M., Ikada, Y., Odani, H. and Kitamaru, R., Macromolecules, 1992, 25(16): 4114

    Article  CAS  Google Scholar 

  53. Routaray, A., Mantri, S., Nath, N., Sutar, A.K. and Maharana, T., Chinese Chem. Lett., 2016, 27(12): 1763

    Article  CAS  Google Scholar 

  54. Na, B., Zou, S. and Lv, R., J. Macromol. Sci., Part B: Phys., 2014, 53(1): 162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-bo Li  (李建波) or Jie Ren  (任杰).

Additional information

This work was financially supported by the National High-Tech R&D Program of China (No. 2013AA032202), the National Natural Science Foundation of China (No. 51203118), the Fundamental Research Funds for the Central Universities and the Open Funds for Characterization of Tongji University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Ky., Li, Jb., Wang, Hx. et al. Effect of Star-shaped chain architectures on the polylactide stereocomplex crystallization behaviors. Chin J Polym Sci 35, 974–991 (2017). https://doi.org/10.1007/s10118-017-1935-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-017-1935-4

Keywords

Navigation