Skip to main content
Log in

Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Thermomechanical properties of polyurethanes (PUs) strongly depend on the molecular interactions and microphase structure. In this work, two chain extenders with different ratios, flexile 1,4-butanediol (BDO) and branched trimethylolpropane mono allyl ether (TMPAE), are used to tune the molecular interactions and microphase structures of a series of biodegradable thermoplastic polyurethanes (TPUs). In TPUs, the biodegradable polycaprolactone (PCL, Mn of 2000) is used as soft segment while 1,6-diisocyanatohexane (HDI) and chain extenders are used as hard segment. Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscppy (1H-NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and mechanical tests were performed to characterize the bulk structure and properties of TPUs. Compared with BDO, the steric bulk of TMPAE is larger. The increment of TMPAE can help to increase the hydrogen bond content, microphase separation, and the elastic modulus ratio (R), which would strongly affect the thermomechanical property of the TPUs. The results of this work verify the importance of the structure of chain extender on the properties of TPUs. It provides valuable information for further understanding the structure-property relationships of these polyurethanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cherng, J. Y.; Hou, T. Y.; Shih, M. F.; Talsma, H.; Hennink, W. E. Polyurethane-based drug delivery systems. Int. J. Pharm. 2013, 450(1), 145–162.

    Article  CAS  Google Scholar 

  2. Zdrahala, R. J.; Zdrahala, I. J. Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. J. Biomater. Appl. 1999, 14(1), 67–90.

    Article  CAS  Google Scholar 

  3. Guelcher, S. A. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng., Part B: Reviews 2008, 14(1), 3–17.

    Article  CAS  Google Scholar 

  4. Guan, J.; Fujimoto, K. L.; Sacks, M. S.; Wagner, W. R. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 2005, 26(18), 3961–3971.

    Article  CAS  Google Scholar 

  5. Song, N. J.; Jiang, X.; Li, J. H.; Pang, Y.; Li, J. S.; Tan, H.; Fu, Q. The degradation and biocompatibility of waterborne biodegradable polyurethanes for tissue engineering. Chinese J. Polym. Sci. 2013, 31(10), 1451–1462.

    Article  CAS  Google Scholar 

  6. Ding, M. M.; Song, N. J.; He, X. L.; Li, J. H.; Zhou, L. J.; Tan, H.; Fu, Q.; Gu, Q. Toward the next-generation nanomedicines: design of multifunctional multiblock polyurethanes for effective cancer treatment. ACS Nano 2013, 7(3), 1918–1928.

    Article  CAS  Google Scholar 

  7. Eceiza, A.; Martin, M.; de la Caba, K.; Kortaberria, G.; Gabilondo, N.; Corcuera, M.; Mondragon, I. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym. Eng. Sci. 2008, 48(2), 297–306.

    Article  CAS  Google Scholar 

  8. Spontak, R. J.; Patel, N. P. Thermoplastic elastomers: fundamentals and applications. Curr. Opin. Colloid Interface Sci. 2000, 5(5), 333–340.

    Article  Google Scholar 

  9. Wang, W. S.; Ping, P.; Yu, H. J.; Chen, X. S.; Jing, X. B. Synthesis and characterization of a novel biodegradable, thermoplastic polyurethane elastomer. J. Polym. Sci., Part A: Polym. Chem. 2010, 44(19), 5505–5512.

    Article  Google Scholar 

  10. Huang, W.; Yang, B.; Zhao, Y.; Ding, Z; Huang, W. M.; Yang, B.; Zhao Y. Thermo-moisture responsive polyurethane shapememory polymer and composites: a review. J. Mater. Chem. 2010, 20(17), 3367–3381.

    Article  CAS  Google Scholar 

  11. Lai, S. M.; Lan, Y. C. Shape memory properties of melt-blended polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J. Polym. Res. 2013, 20(5), 140–147.

    Article  Google Scholar 

  12. Cui, B.; Wu, Q. Y.; Shen, L.; Yu, H. B. High performance bio-based polyurethane elastomers: effect of different soft and hard segments. Chinese J. Polym. Sci. 2016, 34(7), 901–909.

    Article  CAS  Google Scholar 

  13. Guelcher, S. A.; Srinivasan, A.; Dumas, J. E.; Didier, J. E.; McBride, S.; Hollinger, J. O. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials 2008, 29(12), 1762–1775.

    Article  CAS  Google Scholar 

  14. Lee, B. S.; Chun, B. C.; Chung, Y. C.; Sul, K. I.; Cho, J. W. Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect. Macromolecules 2001, 34(18), 6431–6437.

    Article  CAS  Google Scholar 

  15. Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47(4), 1348–1356.

    Article  CAS  Google Scholar 

  16. Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. Water-driven programmable polyurethane shape memory polymer: demonstration and mechanism. Appl. Phys. Lett. 2005, 86(11), DOI: 10.1063/1.1880448

    Google Scholar 

  17. Altintas, Z.; Çakmakçi, E.; Kahraman, M. V.; Kayaman-Apohan, N. Thioether functional chain extender for thermoplastic polyurethanes. Chinese J. Polym. Sci. 2015, 33(6), 850–856.

    Article  CAS  Google Scholar 

  18. Ping, P.; Wang, W. S.; Chen, X. S.; Jing, X. B. Poly(ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6(2), 587–592.

    Article  Google Scholar 

  19. Zhou, L. J.; Yu, L. Q.; Ding, M. M.; Li, J. S.; Tan, H.; Wang, Z. G.; Fu, Q. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules 2011, 44(4), 857–864.

    Article  CAS  Google Scholar 

  20. Rabani, G.; Luftmann, H.; Kraft, A. Synthesis and characterization of two shape-memory polymers containing short aramid hard segments and poly(ε-caprolactone) soft segments. Polymer 2006, 47(12), 4251–4260.

    Article  CAS  Google Scholar 

  21. Li, F.; Zhang, X.; Hou, J.; Xu, M.; Luo, X.; Ma, D.; Kim, B. K. Studies on thermally stimulated shape memory effect of segmented polyurethanes. J. Appl. Polym. Sci. 1997, 64(8), 1511–1516.

    Article  CAS  Google Scholar 

  22. Kim, B. K.; Lee, S. Y.; Xu, M. Polyurethanes having shape memory effects. Polymer 1996, 37(26), 5781–5793.

    Article  CAS  Google Scholar 

  23. Bogdanov, B.; Toncheva, V.; Schacht, E.; Finelli, L.; Sarti, B.; Scandola, M. Physical properties of poly(ester-urethanes) prepared from different molar mass polycaprolactone-diols. Polymer 1999, 40(11), 3171–3182.

    Article  CAS  Google Scholar 

  24. Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Wu, T. M.; Jeng, R. J. Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polymer 2005, 46(25), 11849–11857.

    Article  CAS  Google Scholar 

  25. Jiang, X.; Li, J. H.; Ding, M. M.; Tan, H.; Ling, Q. Y.; Zhong, Y. P.; Fu, Q. Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. Eur. Polym. J. 2007, 43(5), 1838–1846.

    Article  CAS  Google Scholar 

  26. Seymour, R.; Estes, G.; Cooper, S. Infrared studies of segmented polyurethan elastomers. I. Hydrogen bonding. Macromolecules 1970, 3(5), 579–583.

    Article  Google Scholar 

  27. Su, T.; Wang, G. Y.; Xu, D. X.; Hu, C. P. Preparation and properties of waterborne poly-urethaneurea consisting of fluorinated siloxane units. J. Polym. Sci., Part A: Polym. Chem. 2006, 44(10), 3365–3373.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51573114), the National Science Fund for Distinguished Young Scholars of China (No. 51425305), and the Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (No. SKLPME 2016-2-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie-Hua Li or Hong Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WK., Zhao, Y., Wang, R. et al. Effect of Chain Extender on Hydrogen Bond and Microphase Structure of Biodegradable Thermoplastic Polyurethanes. Chin J Polym Sci 36, 514–520 (2018). https://doi.org/10.1007/s10118-018-2020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2020-3

Keywords

Navigation