Skip to main content
Log in

Recent Progress in Shape Memory Polymers for Biomedical Applications

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Shape memory polymers (SMPs) as one type of the most important smart materials have attracted increasing attention due to their promising application in the field of biomedicine, textiles, aerospace et al. Following a brief intoduction of the conception and classification of SMPs, this review is focused on the progress of shape memory polymers for biomedical applications. The progress includes the early researches based on thermo-induced SMPs, the improvement of the stimulus, the development of shape recovery ways and the expansion of the applications in biomedical field. In addition, future perspectives of SMPs in the field of biomedicine are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym Sci. 2015, 49, 79–120.

    Article  CAS  Google Scholar 

  2. Mather, P. T.; Luo, X.; Rousseau, I. A. Shape memory polymer research. Annu. Rev. Mater. Res. 2009, 39, 445–471.

    Article  CAS  Google Scholar 

  3. Hu, J.; Zhu, Y.; Huang, H.; Lu, J. Recent advances in shapememory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym Sci. 2012, 37(12), 1720–1763.

    Article  CAS  Google Scholar 

  4. Hager, M. D.; Bode, S.; Weber, C.; Schubert, U. S. Shape memory polymers: Past, present and future developments. Prog. Polym Sci. 2015, 49–50, 3–33.

    Article  CAS  Google Scholar 

  5. Liu, C.; Qin, H.; Mather, P. Review of progress in shapememory polymers. J. Mater. Chem. 2007, 17(16), 1543–1558.

    Article  CAS  Google Scholar 

  6. Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823–1827.

    Article  CAS  PubMed  Google Scholar 

  7. Chen, S.; Hu, J.; Zhuo, H.; Zhu, Y. Two-way shape memory effect in polymer laminates. Mater. Lett. 2008, 62(25), 4088–4090.

    Article  CAS  Google Scholar 

  8. Herbert, K. M.; Schrettl, S.; Rowan, S. J.; Weder, C. 50th Anniversary perspective: solid-state multistimuli, multiresponsive polymeric materials. Macromolecules 2017, 50(22), 8845–8870.

    Article  CAS  Google Scholar 

  9. Lendlein, A.; Langer, R. Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 2002, 296(5573), 1673–1676.

    Article  PubMed  Google Scholar 

  10. Lendlein, A.; Schmidt, A. M.; Schroeter, M.; Langer, R. Shapememory polymer networks from oligo (ε-caprolactone) dimethacrylates. J. Polym. Sci., Part A: Polym. Chem. 2005, 43(7), 1369–1381.

    Article  CAS  Google Scholar 

  11. Ping, P.; Wang, W.; Chen, X.; Jing, X. Poly (ε-caprolactone) polyurethane and its shape-memory property. Biomacromolecules 2005, 6(2), 587–592.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, Z. X.; Liao, F.; He, Z. Z.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Gao, X. L. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide). Smart Mater. Struct. 2015, 24(12), 125002.

    Article  CAS  Google Scholar 

  13. Liu, Y.; Lv, H.; Lan, X.; Leng, J.; Du, S. Review of electroactive shape-memory polymer composite. Compos. Sci. Technol. 2009, 69(13), 2064–2068.

    Article  CAS  Google Scholar 

  14. Wang, W. X.; Liu, D.; Lu, L.; Chen, H.; Gong, T.; Lu, J.; Zhou, S. The improvement of shape memory function of poly(εcaprolactone)/nano-crystalline cellulose nanocomposite via the recrystallization under a high-pressure environment. J. Mater. Chem. A 2016, 4(16), 5984–5992.

    Article  CAS  Google Scholar 

  15. Zhang, S.; Yu, Z.; Govender, T.; Luo, H.; Li, B. A novel supramolecular shape memory material based on partial α-CDPEG inclusion complex. Polymer 2008, 49(15), 3205–3210.

    Article  CAS  Google Scholar 

  16. Zheng, X.; Zhou, S.; Li, X.; Weng, J. Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. Biomaterials 2006, 27(24), 4288–4295.

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, X.; Zhou, S.; Yu, X.; Li, X.; Feng, B.; Qu, S.; Weng, J. Effect of In vitro degradation of poly(D, L-lactide)/β-tricalcium composite on its shape-memory properties. J. Biomed. Mater. Res. B 2008, 86(1), 170–180.

    Article  CAS  Google Scholar 

  18. Li, Y.; Chen, H.; Liu, D.; Wang, W.; Liu, Y.; Zhou, S. pHResponsive shape memory poly(ethylene glycol)-poly(εepsiloncaprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Appl. Mater. Interfaces 2015, 7(23), 12988–12999.

    Article  CAS  PubMed  Google Scholar 

  19. Xiao, Y.; Zhou, S.; Wang, L.; Zheng, X.; Gong, T. Crosslinked poly(ε-caprolactone)/poly(sebacic anhydride) composites combining biodegradation, controlled drug release and shape memory effect. Compos. Part B-Eng. 2010, 41(7), 537–542.

    Article  CAS  Google Scholar 

  20. Li, W.; Gong, T.; Chen, H.; Wang, L.; Li, J.; Zhou, S. Tuning surface micropattern features using a shape memory functional polymer. RSC Adv. 2013, 3(25), 9865–9874.

    Article  CAS  Google Scholar 

  21. Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(εcaprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci-Mater. M 2012, 23(2), 581–589.

    Article  CAS  Google Scholar 

  22. Gong, T.; Zhao, K.; Yang, G.; Li, J.; Chen, H.; Chen, Y.; Zhou, S. The control of mesenchymal stem cell differentiation using dynamically tunable surface microgrooves. Adv. Healthc. Mater. 2014, 3(10), 1608–1619.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, L.; Di, S.; Wang, W.; Chen, H.; Yang, X.; Gong, T.; Zhou, S. Tunable temperature memory effect of photo-crosslinked star PCL-PEG networks. Macromolecules 2014, 47(5), 1828–1836.

    Article  CAS  Google Scholar 

  24. Gong, T.; Zhao, K.; Wang, W.; Chen, H.; Wang, L.; Zhou, S. Thermally activated reversible shape switch of polymer particles. J. Mater. Chem. B 2014, 2(39), 6855–6866.

    Article  CAS  Google Scholar 

  25. Wang, L.; Yang, X.; Chen, H.; Gong, T.; Li, W.; Yang, G.; Zhou, S. Design of triple-shape memory polyurethane with photo-cross-linking of cinnamon groups. ACS Appl. Mater. Interfaces 2013, 5(21), 10520–105208.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, X.; Wang, L.; Wang, W.; Chen, H.; Yang, G.; Zhou, S. Triple shape memory effect of star-shaped polyurethane. ACS Appl. Mater. Interfaces 2014, 6(9), 6545–54.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, L.; Yang, X.; Chen, H.; Yang, G.; Gong, T.; Li, W.; Zhou, S. Multi-stimuli sensitive shape memory poly(vinyl alcohol)-graft-polyurethane. Polym. Chem. 2013, 4(16), 4461–4468.

    Article  CAS  Google Scholar 

  28. Chen, H.; Li, Y.; Liu, Y.; Gong, T.; Wang, L.; Zhou, S. Highly pH-sensitive polyurethane exhibiting shape memory and drug release. Polym. Chem. 2014, 5(17), 5168.

    Article  CAS  Google Scholar 

  29. Zhou, S.; Zheng, X.; Yu, X.; Wang, J.; Weng, J.; Li, X.; Feng, B.; Yin, M. Hydrogen bonding interaction of poly(D,Llactide)/hydroxyapatite nanocomposites. Chem. Mater. 2007, 19(2), 247–253.

    Article  CAS  Google Scholar 

  30. Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S. Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 2013, 3(19), 7048.

    Article  CAS  Google Scholar 

  31. Zimkowski, M. M.; Rentschler, M. E.; Schoen, J.; Rech, B. A.; Mandava, N.; Shandas, R. Integrating a novel shape memory polymer into surgical meshes decreases placement time in laparoscopic surgery: an in vitro and acute in vivo study. J. Biomed. Mater. Res. A 2013, 101(9), 2613–20.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Musial-Kulik, M.; Kasperczyk, J.; Smola, A.; Dobrzynski, P. Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. Int. J. Pharm. 2014, 465(1-2), 291–298.

    Article  CAS  PubMed  Google Scholar 

  33. Yu, X.; Wang, L.; Huang, M.; Gong, T.; Li, W.; Cao, Y.; Ji, D.; Wang, P.; Wang, J.; Zhou, S. A shape memory stent of poly(εepsilon-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis. J. Mater. Sci. Mater. Med. 2012, 23(2), 581–589.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-moisture responsive polyurethane shape-memory polymer and composites: a review. J. Mater. Chem. 2010, 20(17), 3367.

    Article  CAS  Google Scholar 

  35. Yang, B.; Huang, W. M.; Li, C.; Li, L. Effects of moisture on the thermomechanical properties of a polyurethane shape memory polymer. Polymer 2006, 47(4), 1348–1356.

    Article  CAS  Google Scholar 

  36. Chen, S.; Hu, J.; Yuen, C. W.; Chan, L. Novel moisturesensitive shape memory polyurethanes containing pyridine moieties. Polymer 2009, 50(19), 4424–4428.

    Article  CAS  Google Scholar 

  37. Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S. Waterdriven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 2005, 86(11), 114105.

    Article  CAS  Google Scholar 

  38. Chen, H.; Li, Y.; Tao, G.; Wang, L.; Zhou, S. Thermo- and water-induced shape memory poly(vinyl alcohol) supramolecular networks crosslinked by self-complementary quadruple hydrogen bonding. Polym. Chem. 2016, 7(43), 6637–6644.

    Article  CAS  Google Scholar 

  39. Du, H.; Zhang, J. Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter 2010, 6(14), 3370.

    Article  CAS  Google Scholar 

  40. Mendez, J.; Annamalai, P. K.; Eichhorn, S. J.; Rusli, R.; Rowan, S. J.; Foster, E. J.; Weder, C. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shapememory effect. Macromolecules 2011, 44(17), 6827–6835.

    Article  CAS  Google Scholar 

  41. Liu, Y.; Li, Y.; Chen, H.; Yang, G.; Zheng, X.; Zhou, S. Waterinduced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites. Carbohydr. Polym. 2014, 104, 101–108.

    Article  CAS  PubMed  Google Scholar 

  42. Fleige, E.; Quadir, M. A.; Haag, R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliver. Rev. 2012, 64(9), 866–884.

    Article  CAS  Google Scholar 

  43. Han, X. J.; Dong, Z. Q.; Fan, M. M.; Liu, Y.; li, J. H.; Wang, Y. F.; Yuan, Q. J.; Li, B. J.; Zhang, S. pH-Induced shape-memory polymers. Macromol. Rapid Commun. 2012, 33(12), 1055–1060.

    Article  CAS  Google Scholar 

  44. Song, Q.; Chen, H.; Zhou, S.; Zhao, K.; Wang, B.; Hu, P. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups. Polym. Chem. 2016, 7(9), 1739–1746.

    Article  CAS  Google Scholar 

  45. Guo, W.; Lu, C. H.; Orbach, R.; Wang, F.; Qi, X. J.; Cecconello, A.; Seliktar, D.; Willner, I. pH-Stimulated DNA hydrogels exhibiting shape-memory properties. Adv. Mater. 2015, 27(1), 73–78.

    Article  CAS  PubMed  Google Scholar 

  46. Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(10), 3540–3545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao, Y.; Zhou, S.; Wang, L.; Gong, T. Electro-active shape memory properties of poly(ε-caprolactone)/functionalized multiwalled carbon nanotube nanocomposite. ACS Appl. Mater. Interfaces 2010, 2(12), 3506–3514.

    Article  CAS  PubMed  Google Scholar 

  48. Gong, T.; Li, W.; Chen, H.; Wang, L.; Shao, S.; Zhou, S. Remotely actuated shape memory effect of electrospun composite nanofibers. Acta Biomater. 2012, 8(3), 1248–1259.

    Article  CAS  PubMed  Google Scholar 

  49. Zheng, X.; Zhou, S.; Xiao, Y.; Yu, X.; Li, X.; Wu, P. Shape memory effect of poly(D,L-lactide)/Fe3O4 nan°Composites by inductive heating of magnetite particles. Colloid. Surfaces B 2009, 71(1), 67–72.

    Article  CAS  Google Scholar 

  50. Jiang, H.; Kelch, S.; Lendlein, A. Polymers move in response to light. Adv. Mater. 2006, 18(11), 1471–1475.

    Article  CAS  Google Scholar 

  51. Lendlein, A.; Jiang, H.; Jünger, O.; Langer, R. Light-induced shape-memory polymers. Nature 2005, 434(7035), 879–882.

    Article  CAS  PubMed  Google Scholar 

  52. Ikeda, T.; Nakano, M.; Yu, Y.; Tsutsumi, O.; Kanazawa, A. Anisotropic bending and unbending behavior of azobenzene liquidcrystalline gels by light exposure. Adv. Mater. 2003, 15(3), 201–205.

    Article  CAS  Google Scholar 

  53. Irie, M.; Kunwatchakun, D. Photoresponsive polymers. 8. Reversible photostimulated dilation of polyacrylamide gels having triphenylmethane leuco derivatives.. Macromolecules 1986, 19(10), 2476–2480.

    Article  CAS  Google Scholar 

  54. Wu, L.; Jin, C.; Sun, X. Synthesis, properties, and light-induced shape memory effect of multiblock polyesterurethanes containing biodegradable segments and pendant cinnamamide groups. Biomacromolecules 2010, 12(1), 235–241.

    Article  CAS  PubMed  Google Scholar 

  55. Behl, M.; Lendlein, A. Triple-shape polymers. J. Mater. Chem. 2010, 20(17), 3335.

    Article  CAS  Google Scholar 

  56. Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464(7286), 267–270.

    Article  CAS  PubMed  Google Scholar 

  57. Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric tripleshape materials. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(48), 18043–18047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zotzmann, J.; Behl, M.; Feng, Y.; Lendlein, A. Copolymer Networks based on poly(ω-pentadecalactone) and poly(εcaprolactone) segments as a versatile triple-shape polymer system. Adv. Funct. Mater. 2010, 20(20), 3583–3594.

    Article  CAS  Google Scholar 

  59. Luo, X.; Mather, P. T. Triple-shape polymeric composites (TSPCs). Adv. Funct. Mater. 2010, 20(16), 2649–2656.

    Article  CAS  Google Scholar 

  60. Song, S.; Feng, J.; Wu, P. A new strategy to prepare polymerbased shape memory elastomers. Macromol. Rapid Commun. 2011, 32(19), 1569–1575.

    Article  CAS  PubMed  Google Scholar 

  61. Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30(21), 1823–1827.

    Article  CAS  PubMed  Google Scholar 

  62. Ahn, S. K.; Kasi, R. M. Exploiting microphase-separated morphologies of side-chain liquid crystalline polymer networks for triple shape memory properties. Adv. Funct. Mater. 2011, 21(23), 4543–4549.

    Article  CAS  Google Scholar 

  63. Li, J.; Xie, T. Significant impact of thermo-mechanical conditions on polymer triple-shape memory effect. Macromolecules 2011, 44(1), 175–180.

    Article  CAS  Google Scholar 

  64. Luo, Y.; Guo, Y.; Gao, X.; Li, B. G.; Xie, T. A general approach towards thermoplastic multishape-memory polymers via sequence structure design. Adv. Mater. 2013, 25(5), 743–748.

    Article  CAS  PubMed  Google Scholar 

  65. Behl, M.; Kratz, K.; Zotzmann, J.; Nochel, U.; Lendlein, A. Reversible bidirectional shape-memory polymers. Adv. Mater. 2013, 25(32), 4466–4469.

    Article  CAS  PubMed  Google Scholar 

  66. Pandini, S.; Passera, S.; Messori, M.; Paderni, K.; Toselli, M.; Gianoncelli, A.; Bontempi, E.; Riccö, T. Two-way reversible shape memory behaviour of crosslinked poly(ε-caprolactone). Polymer 2012, 53(9), 1915–1924.

    Article  CAS  Google Scholar 

  67. Zhou, J.; Turner, S. A.; Brosnan, S. M.; Li, Q.; Carrillo, J.M. Y.; Nykypanchuk, D.; Gang, O.; Ashby, V. S.; Dobrynin, A. V.; Sheiko, S. S. Shapeshifting: reversible shape memory in semicrystalline elastomers. Macromolecules 2014, 47(5), 1768–1776.

    Article  CAS  Google Scholar 

  68. Kumpfer, J. R.; Rowan, S. J. Thermo-, photo-, and chemoresponsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 2011, 133(32), 12866–12874.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang, Y.; Jiang, X.; Wu, R.; Wang, W. Multi-stimuli responsive shape memory polymers synthesized by using reaction-induced phase separation. J. Appl. Polym. Sci. 2016, 133, 43534.

    Google Scholar 

  70. Choi, N. Y.; Kelch, S.; Lendlein, A. Synthesis, Shape-memory functionality and hydrolytical degradation studies on polymer networks from poly(rac-lactide)-b-poly(propylene oxide)-b-poly(rac-lactide) dimethacrylates. Adv. Eng. Mater. 2006, 8(5), 439–445.

    Article  CAS  Google Scholar 

  71. Kelch, S.; Steuer, S.; Schmidt, A. M.; Lendlein, A. Shapememory polymer networks from oligo [(ε-hydroxycaproate)-coglycolate] dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate. Biomacromolecules 2007, 8(3), 1018–1027.

    Article  CAS  PubMed  Google Scholar 

  72. Lu, H.; Huang, W. M. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl. Phys. Lett. 2013, 102(23), 231910.

    Article  CAS  Google Scholar 

  73. Lu, H.; Gou, J. Study on 3-D high conductive graphene buckypaper for electrical actuation of shape memory polymer. Nanosci. Nanotech. Lett. 2012, 4(12), 1155–1159.

    Article  CAS  Google Scholar 

  74. Lu, H.; Bai, P.; Yin, W.; Liang, F.; Gou, J. Magnetically aligned carbon nanotubes in nanopaper for electro-activated shape-memory nanocomposites. Nanosci. Nanotech. Lett. 2013, 5(7), 732–736.

    Article  Google Scholar 

  75. Heuwers, B.; Beckel, A.; Krieger, A.; Katzenberg, F.; Tiller, J. C. Shape-memory natural rubber: an exceptional material for strain and energy storage. Macromol. Chem. Phys. 2013, 214(8), 912–923.

    Article  CAS  Google Scholar 

  76. Anthamatten, M.; Roddecha, S.; Li, J. Energy storage capacity of shape-memory polymers. Macromolecules 2013, 46(10), 4230–4234.

    Article  CAS  Google Scholar 

  77. Liu, L.; Shen, B.; Jiang, D.; Guo, R.; Kong, L.; Yan, X. Watchband-like supercapacitors with body temperature inducible shape memory Ability. Adv. Energy Mater. 2016, 6, 1600763.

    Article  CAS  Google Scholar 

  78. Habault, D.; Zhang, H.; Zhao, Y. Light-triggered self-healing and shape-memory polymers. Chem. Soc. Rev. 2013, 42(17), 7244–7256.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, L.; Wang, W.; Di, S.; Yang, X.; Chen, H.; Gong, T.; Zhou, S. Silver-coordination polymer network combining antibacterial action and shape memory capabilities. RSC Adv. 2014, 4(61), 32276–32282.

    Article  CAS  Google Scholar 

  80. Xiao, X.; Xie, T.; Cheng, Y. T. Self-healable graphene polymer composites. J. Mater. Chem. 2010, 20(17), 3508–3514.

    Article  CAS  Google Scholar 

  81. Rodriguez, E. D.; Luo, X.; Mather, P. T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH). ACS Appl. Mater. Interfaces 2011, 3(2), 152–161.

    Article  CAS  PubMed  Google Scholar 

  82. Luo, X.; Mather, P. T. Shape memory assisted self-healing coating. ACS Macro. Lett. 2013, 2(2), 152–156.

    Article  CAS  Google Scholar 

  83. Birjandi Nejad, H.; Garrison, K. L.; Mather, P. T. Comparative analysis of shape memory-based self-healing coatings. J. Polym. Sci., Part B: Polym. Phys. 2016, 54(14), 1415–1426.

    Article  CAS  Google Scholar 

  84. Wang, L.; Di, S.; Wang, W.; Zhou, S. Self-healing and shape memory capabilities of copper-coordination polymer network. RSC Adv. 2015, 5(37), 28896–28900.

    Article  CAS  Google Scholar 

  85. Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A. Polymer networks combining controlled drug release, biodegradation, and shape memory capability. Adv. Mater. 2009, 21(32-33), 3394–3398.

    Article  CAS  PubMed  Google Scholar 

  86. Müller, A.; Zink, M.; Hessler, N.; Wesarg, F.; Müller, F. A.; Kralisch, D.; Fischer, D. Bacterial nanocellulose with a shapememory effect as potential drug delivery system. RSC Adv. 2014, 4(100), 57173–57184.

    Article  CAS  Google Scholar 

  87. Xue, L.; Dai, S.; Li, Z. Biodegradable shape-memory block copolymers for fast self-expandable stents. Biomaterials 2010, 31(32), 8132–8140.

    Article  CAS  PubMed  Google Scholar 

  88. Huang, W. M.; Song, C. L.; Fu, Y. Q.; Wang, C. C.; Zhao, Y.; Purnawali, H.; Lu, H. B.; Tang, C.; Ding, Z.; Zhang, J. L. Shaping tissue with shape memory materials. Adv. Drug Deliver. Rev. 2013, 65(4), 515–535.

    Article  CAS  Google Scholar 

  89. Sun, L.; Huang, W. M. Thermo/moisture responsive shapememory polymer for possible surgery/operation inside living cells in future. Mater. Design 2010, 31(5), 2684–2689.

    Article  CAS  Google Scholar 

  90. Bilici, C.; Can, V.; Nochel, U.; Behl, M.; Lendlein, A.; Okay, O. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength. Macromolecules 2016, 49(19), 7442–7449.

    Article  CAS  Google Scholar 

  91. Migneco, F.; Huang, Y. C.; Birla, R. K.; Hollister, S. J. Poly(glycerol-dodecanoate), a biodegradable polyester for medical devices and tissue engineering scaffolds. Biomaterials 2009, 30(33), 6479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yang, X.; Cui, C.; Tong, Z.; Sabanayagam, C. R.; Jia, X. Poly(ε-caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers. Acta Biomater. 2013, 9(9), 8232–8244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hiebl, B.; Mrowietz, C.; Goers, J.; Bahramsoltani, M.; Plendl, J.; Kratz, K.; Lendlein, A.; Jung, F. In vivo evaluation of the angiogenic effects of the multiblock copolymer PDC using the hen’s egg chorioallantoic membrane test. Clin. Hemorheol. Microcirc. 2010, 46(2-3), 233–238.

    CAS  PubMed  Google Scholar 

  94. Liu, X.; Zhao, K.; Gong, T.; Song, J.; Bao, C.; Luo, E.; Weng, J.; Zhou, S. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules 2014, 15(3), 1019–1030.

    Article  CAS  PubMed  Google Scholar 

  95. Gong, T.; Zhao, K.; Liu, X.; Lu, L.; Liu, D.; Zhou, S. A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization. Small 2016, 12(41), 5769–5778.

    Article  CAS  PubMed  Google Scholar 

  96. Liu, D.; Xiang, T.; Gong, T.; Tian, T.; Liu, X.; Zhou, S. Bioinspired 3D multilayered shape memory scaffold with a hierarchically changeable micropatterned surface for efficient vascularization. ACS Appl. Mater. Interfaces 2017, 9(23), 19725–19735.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (Nos. 21574105 and 51725303), and the Sichuan Province Youth Science and Technology Innovation Team (No. 2016TD0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Bing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HM., Wang, L. & Zhou, SB. Recent Progress in Shape Memory Polymers for Biomedical Applications. Chin J Polym Sci 36, 905–917 (2018). https://doi.org/10.1007/s10118-018-2118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2118-7

Keywords

Navigation