Skip to main content
Log in

Comparative Investigation on Step-cycle Tensile Behaviors of Two Bimodal Pipe-grade Polyethylene with Different Slow Crack Growth Resistance

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this work, step-cycle tensile behavior of two bimodal polyethylene (PE) materials, a PE100 grade pipe material, XS10, and a PE100-RC (Resistant Crack) grade pipe material, XSC50, was comparatively investigated. By decomposing the strain into a recoverable part and an unrecoverable part, it was found that the deformation recovery capability of XSC50 during stretching was larger than that of XS10. Structural evolution characterized by in situ synchrotron small angle X-ray scattering indicated that the fragmentation of initial crystals in XSC50 occurred at lower strain than in XS10. Considering that XSC50 had relatively small lamellar thickness and similar crystallinity to XS10, we speculated that the larger deformation recovery capability of XSC50 during stretching probably derived from stronger entangled amorphous region caused by larger density of tie molecules and entanglements, which were usually regarded to have a significant influence on the slow crack growth (SCG) resistance of PE materials. As expected, the experimental result of strain hardening modulus test suggested that the deformation recovery capability during stretching was positively correlated with the SCG resistance for XS10 and XSC50 used in this work. The step-cycle tensile test had the potential to be developed into a supplement for comparison of SCG resistance of PE materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Institute, P. P., in Handbook of polyethylene pipe, Plastics Pipe Institute: Irving, Texas, 2007.

    Google Scholar 

  2. Peacock, A., in Handbook of polyethylene: structures, properties, and applications, CRC Press, 2000.

  3. Wu, T.; Yu, L.; Cao, Y.; Yang, F.; Xiang, M. Effect of molecular weight distribution on rheological, crystallization and mechanical properties of polyethylene-100 pipe resins. J. Polym. Res.2013, 20, 271.

    Article  CAS  Google Scholar 

  4. ISO 12162: 2009, Thermoplastics materials for pipes and fittings for pressure applications—classification, designation and design coefficient.

  5. ISO 9080: 2012, Plastics piping and ducting systems—Determination of the long-term hydrostatic strength of thermoplastics materials in pipe form by extrapolation.

  6. Arbeiter, F.; Austria, L.; Pinter, G. Characterization of slow crack growth resistance of polyethylene pipe grades with cyclic cracked round bar (CRB) test in correlation to strain hardening (SH) test. In ANTEC, Society of Plastics Engineers Incorporated (SPE): Anaheim, 2017, Vol. 37.

  7. Pinter, G.; Haager, M.; Balika, W.; Lang, R. W. Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades. Polym. Test.2007, 26, 180–188.

    Article  CAS  Google Scholar 

  8. Kratochvilla, T. R.; Frank, A.; Pinter, G. Determination of slow crack growth behaviour of polyethylene pressure pipes with cracked round bar test. Polym. Test.2014, 40, 299–303.

    Article  CAS  Google Scholar 

  9. Shen, H.; Xie, B.; Yang, W.; Yang, M. Non-isothermal crystallization of polyethylene blends with bimodal molecular weight distribution. Polym. Test.2013, 32, 1385–1391.

    Article  CAS  Google Scholar 

  10. Alt, F. P.; Böhm, L. L.; Enderle, H. F.; Berthold, J. Bimodal polyethylene-interplay of catalyst and process. Macromol. Symp.2001, 163, 135–144.

    Article  CAS  Google Scholar 

  11. Strobl, G. R., in The physics of polymers. Springer-Verlag Berlin Heidelberg, 2007.

    Google Scholar 

  12. Fan, Y.; Xue, Y.; Nie, W.; Ji, X.; Bo, S. Characterization of the microstructure of bimodal HDPE resin. Polym. J.2009, 41, 622–628.

    Article  CAS  Google Scholar 

  13. Pan, Y.; Gao, X.; Wang, Z.; Lei, J.; Li, Z.; Shen, K. Effect of different morphologies on slow crack growth of high-density polyethylene. RSC Adv.2015, 5, 28191–28202.

    Article  CAS  Google Scholar 

  14. DesLauriers, P. J.; Rohlfing, D. C. Estimating slow crack growth performance of polyethylene resins from primary structures such as molecular weight and short chain branching. Macromol. Symp.2009, 282, 136–149.

    Article  CAS  Google Scholar 

  15. Lustiger, A.; Corneliussen, R. The role of crazes in the crack growth of polyethylene. J. Mater. Sci.1987, 22, 2470–2476.

    Article  CAS  Google Scholar 

  16. Narisawa, I.; Yee, A., in Crazing and fracture of polymers. Wiley Online Library, 2006.

  17. Bhattacharya, S. K.; Brown, N. Micromechanisms of crack initiation in thin films and thick sections of polyethylene. J. Mater. Sci.1984, 19, 2519–2532.

    Article  CAS  Google Scholar 

  18. Fawaz, J.; Deveci, S.; Mittal, V. Molecular and morphological studies to understand slow crack growth (SCG) of polyethylene. Colloid Polym. Sci.2016, 294, 1269–1280.

    Article  CAS  Google Scholar 

  19. Hiss, R.; Hobeika, S.; Lynn, C.; Strobl, G. Network stretching, slip processes, and fragmentation of crystallites during uniaxial drawing of polyethylene and related copolymers a comparative study. Macromolecules1999, 32, 4390–4403.

    Article  CAS  Google Scholar 

  20. Brömstrup, H. in PE100 pipe systems. Vulkan-Verlag GmbH, 2004.

  21. ÖVGW QS-G 392/2: 2013, Polyethylene piping systems PE80, PE100 and PE100-RC for the supply of gaseous fuels, Part 2: pipes.

  22. ÖVGW/GRIS PW 405/1: 2012, Polyethylene PE100-RC pipe systems for alternative installation techniques for the supply of drinking water.

  23. O’Connell, P. A.; Bonner, M. J.; Duckett, R. A.; Ward, I. M. The relationship between slow crack propagation and tensile creep behaviour in polyethylene. Polymer1995, 36, 2355–2362.

    Article  Google Scholar 

  24. Cawood, M.; Channell, A.; Capaccio, G. Crack initiation and fibre creep in polyethylene. Polymer1993, 34, 423–425.

    Article  CAS  Google Scholar 

  25. Rose, L. J.; Channell, A. D.; Frye, C. J.; Capaccio, G. Slow crack growth in polyethylene: a novel predictive model based on the creep of craze fibrils. J. Appl. Polym. Sci.1994, 54, 2119–2124.

    Article  CAS  Google Scholar 

  26. Kurelec, L.; Teeuwen, M.; Schoffeleers, H.; Deblieck, R. Srrain hardening modulus as a measure of environmental stress crack resistance of high density polyethylene. Polymer2005, 46, 6369–6379.

    Article  CAS  Google Scholar 

  27. Capaccio, G. Structural changes in the preparation of ultra-high modulus polyethylene. Pure Appl. Chem.1983, 55, 869–872.

    Article  CAS  Google Scholar 

  28. Brown, N.; Lu, X. A fundamental theory for slow crack growth in polyethylene. Polymer1995, 36, 543–548.

    Article  CAS  Google Scholar 

  29. Lu, X.; Mcghie, A.; Brown, N. The dependence of slow crack growth in a polyethylene copolymer on test temperature and morphology. J. Polym. Sci., Part B: Polym. Phys.1922, 30, 1207–1214.

    Article  Google Scholar 

  30. Brown, N.; Ward, I. M. The influence of morphology and molecular weight on ductile-brittle transitions in linear polyethylene. J. Mater. Sci.1983, 18, 1405–1420.

    Article  CAS  Google Scholar 

  31. Deveci, S.; Fang, D. Correlation of molecular parameters, strain hardening modulus and cyclic fatigue test performances of polyethylene materials for pressure pipe applications. Polym. Test.2017, 62, 246–253.

    Article  CAS  Google Scholar 

  32. He, X.; Zha, X.; Zhu, X.; Qi, X.; Liu, B. Effect of short chain branches distribution on fracture behavior of polyethylene pipe resins. Polym. Test.2018, 68, 219–228.

    Article  CAS  Google Scholar 

  33. ISO 18488: 2015, Polyethylene (PE) materials for piping systems—determination of strain hardening modulus in relation to slow crack growth—test method.

  34. Cheng, J. J.; Polak, M. A.; Penlidis, A. Polymer network mobility and environmental stress cracking resistance of high density polyethylene. Polym. Plast. Technol.2009, 48, 1252–1261.

    Article  CAS  Google Scholar 

  35. Hong, K.; Rastogi, A.; Strobl, G. A model treating tensile deformation of semicrystalline polymers: quasi-static stressstrain relationship and viscous stress determined for a sample of polyethylene. Macromolecules2004, 37, 10165–10173.

    Article  CAS  Google Scholar 

  36. Men, Y.; Rieger, J.; Strobl, G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys. Rev. Lett.2003, 91, 095502.

    Article  CAS  Google Scholar 

  37. Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Heckmann, W.; Men, Y. Two lamellar to fibrillar transitions in the tensile deformation of high-density polyethylene. Macromolecules2010, 43, 4727–4732.

    Article  CAS  Google Scholar 

  38. Sun, Y.; Fu, L.; Wu, Z.; Men, Y. Structural evolution of ethylene-octene copolymers upon stretching and unloading. Macromolecules2013, 46, 971–976.

    Article  CAS  Google Scholar 

  39. Kida, T.; Oku, T.; Hiejima, Y.; Nitta, K. H. Deformation mechanism of high-density polyethylene probed by in situ Raman spectroscopy. Polymer2015, 58, 88–95.

    Article  CAS  Google Scholar 

  40. Seger, M. R.; Maciel, G. E. Quantitative 13C NMR analysis of sequence distributions in poly(ethylene-co-1-hexene). Anal. Chem.2004, 76, 5734–5747.

    Article  CAS  Google Scholar 

  41. Nitta, K. H.; Tanaka, A. Dynamic mechanical properties of metallocene catalyzed linear polyethylenes. Polymer2001, 42, 1219–1226.

    Article  CAS  Google Scholar 

  42. Nakayasu, H.; Markovitz, H.; Plazek, D. The frequency and temperature dependence of the dynamic mechanical properties of a high density polyethylene. T. Soc. Rheol.1961, 5, 261–283.

    Article  CAS  Google Scholar 

  43. Kajiyama, T.; Okada, T.; Sakoda, A.; Takayanagi, M. Analysis of the a-relaxation process of bulk crystallized polyethylene based on that of single crystal mat. J. Macromol. Sci. B1973, 7, 583–608.

    Article  CAS  Google Scholar 

  44. Müller, A. J.; Arnal, M. L. Thermal fractionation of polymers. Prog. Polym. Sci.2005, 30, 559–603.

    Article  CAS  Google Scholar 

  45. Jiang, Z.; Tang, Y.; Men, Y.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Rieger, J. Structural evolution of tensile-deformed high-density polyethylene during annealing: scanning synchrotron small-angle X-ray scattering study. Macromolecules2007, 40, 7263–7269.

    Article  CAS  Google Scholar 

  46. Jiang, Z.; Tang, Y.; Rieger, J.; Enderle, H. F.; Lilge, D.; Roth, S. V.; Gehrke, R.; Wu, Z.; Li, Z.; Men, Y. Structural evolution of tensile deformed high-density polyethylene at elevated temperatures: Scanning synchrotron small- and wide-angle X-ray scattering studies. Polymer2009, 50, 4101–4111.

    Article  CAS  Google Scholar 

  47. Beech, S.; Clutton, E. Interpretation of results of full notch creep test and comparison with notched pipe test. Plast. Rubber Compos.2005, 34, 294–300.

    Article  CAS  Google Scholar 

  48. ISO 13479: 2009, Polyolefin pipes for the conveyance of fluids—determination of resistance to crack propagation—test method for slow crack growth on notched pipes.

  49. ISO 16241: 2005, Notch tensile test to measure the resistance to slow crack growth of polyethylene materials for pipe and fitting products (PENT).

  50. ISO 16770: 2004, Plastics—determination of environmental stress cracking (ESC) of polyethylene—full-notch creep test (FNCT).

Download references

Acknowledgments

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51773040 and 21574029) and PetroChina Company Limited, China. We also greatly thank for the beam time provided by Shanghai Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Chun Feng.

Electronic Supplementary Information

10118_2020_2364_MOESM1_ESM.pdf

Comparative Investigation on Step-cycle Tensile Behaviors of Two Bimodal Pipe-grade Polyethylene with Different Slow Crack Growth Resistance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YQ., Zhang, QL., Lu, XY. et al. Comparative Investigation on Step-cycle Tensile Behaviors of Two Bimodal Pipe-grade Polyethylene with Different Slow Crack Growth Resistance. Chin J Polym Sci 38, 611–619 (2020). https://doi.org/10.1007/s10118-020-2364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2364-3

Keywords

Navigation