Skip to main content
Log in

Sustainable Blends of Poly(propylene carbonate) and Stereocomplex Polylactide with Enhanced Rheological Properties and Heat Resistance

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Sustainable blends of poly(propylene carbonate) (PPC) and stereocomplex polylactide (sc-PLA) were prepared by melt blending equimolar poly(L-lactic acid) (PLLA) and poly(D-lactide acid) (PDLA) with PPC to form sc-PLA crystals in situ in the melt blending process. Differential scanning calorimetry analysis revealed that only sc-PLA, no homo-crystallization of PLLA or PDLA, formed in the PPC matrix as the sc-PLA content was more than 10 wt%. Very intriguingly, scanning electronic microscopy observation showed that sc-PLA was evenly dispersed in the PPC phase as spherical particles and the sizes of sc-PLA particles did not obviously increase with increasing sc-PLA content. As a consequence, the rheological properties of PPC were greatly improved by incorporation of sc-PLA. When the sc-PLA content was 20 wt%, a percolation network structure was formed, and the blends showed solid-like behavior. The sc-PLA particles could reinforce the PPC matrix, especially at a temperature above the glass transition temperature of PPC. Moreover, the Vicat softening temperature of PPC/sc-PLA blends could be increased compared with that of neat PPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muthuraj, R.; Mekonnen, T. Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: copolymers and polymer blends. Polymer2018, 145, 348–373.

    CAS  Google Scholar 

  2. Yang, Z. Z.; He, L. N.; Gao, J.; Liu, A. H.; Yu, B. Carbon dioxide utilization with CN bond formation: carbon dioxide capture and subsequent conversion. Energy Environ. Sci.2012, 5, 6602–6639.

    CAS  Google Scholar 

  3. Williams, C. K.; Hillmyer, M. A. Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym. Rev.2008, 48, 1–10.

    CAS  Google Scholar 

  4. Honda, S.; Mori, T.; Goto, H.; Sugimoto, H. Carbon-dioxide-derived unsaturated alicyclic polycarbonate: synthesis, characterization, and post-polymerization modification. Polymer2014, 55, 4832–4836.

    CAS  Google Scholar 

  5. Darensbourg, D. J.; Wei, S.; Yeung, A. D.; Ellis, W. C. An efficient method of depolymerization of poly(cyclopentene carbonate) to its comonomers: cyclopentene oxide and carbon dioxide. Macromolecules2013, 46, 5850–5855.

    CAS  Google Scholar 

  6. Xu, J. W.; Feng, E.; Song, J. Renaissance of aliphatic polycarbonates: new techniques and biomedical applications. J. Appl. Polym. Sci.2014, 131, 39822.

    Google Scholar 

  7. Udipi, K.; Gillham, J. K. Poly(ethylene carbonate) and poly(propylene carbonate): transitions and thermomechanical spectra. J. Appl. Polym. Sci.1974, 18, 1575–1580.

    CAS  Google Scholar 

  8. Phillips, O.; Schwartz, J. M.; Kohl, P. A. Thermal decomposition of poly(propylene carbonate): end-capping, additives, and solvent effects. Polym. Degrad. Stab.2016, 125, 129–139.

    CAS  Google Scholar 

  9. Bahramian, B.; Ma, Y.; Rohanizadeh, R.; Chrzanowski, W.; Dehghani, F. A new solution for removing metal-based catalyst residues from a biodegradable polymer. Green Chem.2016, 18, 3740–3748.

    CAS  Google Scholar 

  10. Zhuo, C. W.; Qin, Y. S.; Wang, X. H.; Wang, F. S. Steric hindrance ligand strategy to aluminum porphyrin catalyst for completely alternative copolymerization of CO2 and propylene oxide. Chinese J. Polym. Sci.2018, 36, 252–260.

    CAS  Google Scholar 

  11. Tao, Y. H.; Wang, X. H.; Zhao, X. J.; Li, J.; Wang, F. S. Double propagation based on diepoxide, a facile route to high molecular weight poly(propylene carbonate). Polymer2006, 47, 7368–7373.

    CAS  Google Scholar 

  12. Muthuraj, R.; Misra, M.; Mohanty, A. K. Biodegradable compatibilized polymer blends for packaging applications: a literature review. J. Appl. Polym. Sci.2018, 135, 45726.

    Google Scholar 

  13. Yao, M. Modification of poly(lactic acid)/poly(propylene carbonate) blends through melt compounding with maleic anhydride. Express Polym. Lett.2011, 5, 937–949.

    CAS  Google Scholar 

  14. Zhou, L. Y.; Zhao, G. Y.; Jiang, W. Effects of catalytic transesterification and composition on the toughness of poly(lactic acid)/poly(propylene carbonate) blends. Ind. Eng. Chem. Res.2016, 55, 5565–5573.

    CAS  Google Scholar 

  15. Qin, S. X.; Yu, C. X.; Chen, X. Y.; Zhou, H. P.; Zhao, L. F. Fully biodegradable poly(lactic acid)/poly(propylene carbonate) shape memory materials with low recovery temperature based on in situ compatibilization by dicumyl peroxide. Chinese J. Polym. Sci.2018, 36, 783–790.

    CAS  Google Scholar 

  16. Corre, Y. M.; Bruzaud, S.; Grohens, Y. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(propylene carbonate) blends: an efficient method to finely adjust properties of functional materials. Macromol. Mater. Eng.2013, 298, 1176–1183.

    CAS  Google Scholar 

  17. Peng, S. W.; An, Y. X.; Chen, C.; Fei, B.; Zhuang, Y. G.; Dong, L. S. Miscibility and crystallization behavior of poly(3-hydroxyvalerate-co-3-hydroxyvalerate)/poly (propylene carbonate) blends. J. Appl. Polym. Sci.2003, 90, 4054–4060.

    CAS  Google Scholar 

  18. Li, J. H.; Lai, M. F.; Liu, J. J. Control and development of crystallinity and morphology in poly(β-hydroxybutyrate-co-β-hydroxyvalerate)/poly(propylene carbonate) blends. J. Appl. Polym. Sci.2005, 98, 1427–1436.

    CAS  Google Scholar 

  19. El-Hadi, A. M. Improvement of the miscibility by combination of poly(3-hydroxy butyrate) PHB and poly(propylene carbonate) PPC with additives. J. Polym. Environ.2017, 25, 728–738.

    CAS  Google Scholar 

  20. Yang, D. Z.; Hu, P. Miscibility, crystallization, and mechanical properties of poly(3-hydroxybutyrate) and poly(propylene carbonate) biodegradable blends. J. Appl. Polym. Sci.2008, 109, 1635–1642.

    CAS  Google Scholar 

  21. Chen, G. J.; Wang, Y. Y.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Orientation microstructure and properties of poly(propylene carbonate)/poly(butylene succinate) blend films. J. Appl. Polym. Sci.2013, 128, 390–399.

    CAS  Google Scholar 

  22. Pang, M. Z.; Qiao, J. J.; Jiao, J.; Wang, S. J.; Xiao, M.; Meng, Y. Z. Miscibility and properties of completely biodegradable blends of poly(propylene carbonate) and poly(butylene succinate). J. Appl. Polym. Sci.2008, 107, 2854–2860.

    CAS  Google Scholar 

  23. Zeng, S. S.; Wang, S. J.; Xiao, M.; Han, D. M.; Meng, Y. Z. Preparation and properties of biodegradable blend containing poly(propylene carbonate) and starch acetate with different degrees of substitution. Carbohydr. Polym.2011, 86, 1260–1265.

    CAS  Google Scholar 

  24. Ge, X. C.; Li, X. H.; Zhu, Q.; Li, L.; Meng, Y. Z. Preparation and properties of biodegradable poly(propylene carbonate)/starch composites. Polym. Eng. Sci.2004, 44, 2134–2140.

    CAS  Google Scholar 

  25. Chen, L.; Hu, K.; Sun, S.; Jiang, H.; Huang, D.; Zhang, K. Y.; Pan, L.; Li, Y. S. Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J. Polym. Sci.2018, 36, 1342–1352.

    CAS  Google Scholar 

  26. Tsuji, H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol. Biosci.2005, 5, 569–597.

    CAS  PubMed  Google Scholar 

  27. Wang, M.; You, L. C.; Guo, Y. Q.; Jiang, N.; Gan, Z. H.; Ning, Z. B. Enhanced crystallization rate of poly(L-lactide)/hydroxyapatite-graft-poly(D-lactide) composite with different processing temperatures. Chinese J. Polym. Sci.2020, doi: https://doi.org/10.1007/s10118-020-2374-1.

  28. Shao, J.; Liu, Y. L.; Xiang, S.; Bian, X. C.; Sun, J. R.; Li, G.; Chen, X. S.; Hou, H. Q. The stereocomplex formation and phase separation of PLLA/PDLA blends with different optical purities and molecular weights. Chinese J. Polym. Sci.2015, 33, 1713–1720.

    CAS  Google Scholar 

  29. Bouapao, L.; Tsuji, H. Stereocomplex crystallizationand spherulite growthoflow molecular weight poly(L-lactide) and poly(D-lactide) from the melt. Macromol. Chem. Phys.2009, 210, 993–1002.

    CAS  Google Scholar 

  30. Wang, G.; Zhang, D. M.; Li, B.; Wan, G. P.; Zhao, G. Q.; Zhang, A. M. Strong and thermal-resistance glass fiber-reinforced polylactic acid (PLA) composites enabled by heat treatment. Int. J. Biol. Macromol.2019, 129, 448–459.

    CAS  PubMed  Google Scholar 

  31. Li, W.; Sun, Q. S.; Mu, B. N.; Luo, G. Q.; Xu, H. L.; Yang, Y. Q. Poly(L-lactic acid) bio-composites reinforced by oligo(D-lactic acid) grafted chitosan for simultaneously improved ductility, strength and modulus. Int. J. Biol. Macromol.2019, 131, 495–504.

    CAS  PubMed  Google Scholar 

  32. Tsuji, H.; Horii, F.; Hyon, S. H.; Ikada, Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions. Macromolecules1991, 24, 2719–2724.

    CAS  Google Scholar 

  33. Tsuji, H.; Ikada, Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 6. Binary blends from copolymers. Macromolecules1992, 25, 5719–5723.

    CAS  Google Scholar 

  34. Bao, R. Y.; Yang, W.; Jiang, W. R.; Liu, Z. Y.; Xie, B. H.; Yang M. B. Polymorphism of racemic poly(L-lactide)/poly(D-lactide) blend: effect of melt and cold crystallization. J. Phys. Chem. B2013, 117, 3667–3674.

    CAS  PubMed  Google Scholar 

  35. Bao, R. Y.; Yang, W.; Jiang, W. R.; Liu, Z. Y.; Xie, B. H.; Yang, M. B.; Fu, Q. Stereocomplex formation of high-molecular-weight polylactide: a low temperature approach. Polymer2012, 53, 5449–5454.

    CAS  Google Scholar 

  36. Tsuji, H.; Horii, F.; Nakagawa, M.; Ikada, Y.; Odani, H.; Kitamaru, R. Stereocomplex formation between enantiomeric poly(lactic acid)s. 7. Phase structure of the stereocomplex crystallized from a dilute acetonitrile solution as studied by high-resolution solidstate carbon-13 NMR spectroscopy. Macromolecules1992, 25, 4114–4118.

    CAS  Google Scholar 

  37. Qin, Y. S.; Sheng, X. F.; Liu, S. J.; Ren, G. J.; Wang, X. H.; Wang, F. S. Recent advances in carbon dioxide based copolymers. J. CO2Util.2015, 11, 3–9.

    CAS  Google Scholar 

  38. Li, Y.; Han, C. Y.; Yu, Y. C.; Huang, D. X. Morphological, thermal, rheological and mechanical properties of poly(butylene carbonate) reinforced by stereocomplex polylactide. Int. J. Biol. Macromol.2019, 137, 1169–1178.

    CAS  PubMed  Google Scholar 

  39. Tsuji, H.; Tashiro, K.; Bouapao, L.; Hanesaka, M. Synchronous and separate homo-crystallization of enantiomeric poly(L-lactic acid)/poly(D-lactic acid) blends. Polymer2012, 53, 747–754.

    CAS  Google Scholar 

  40. Han, C. Y.; Ran, X. H.; Su, X.; Zhang, K. Y.; Liu, N. A.; Dong, L. S. Effect of peroxide crosslinking on thermal and mechanical properties of poly(ε-caprolactone). Polym. Int.2007, 56, 593–600.

    CAS  Google Scholar 

  41. Liu, H. Z.; Chen, F.; Liu, B.; Estep, G.; Zhang, J. W. Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules2010, 43, 6058–6066.

    CAS  Google Scholar 

  42. Chen, F.; Zhang, J. W. A new approach for morphology control of poly(butylene adipate-co-terephthalate) and soy protein blends. Polymer2009, 50, 3770–3777.

    CAS  Google Scholar 

  43. Sundararaj, U.; Macosko, C. W. Drop breakup and coalescence in polymer blends: the effects of concentration and compatibilization. Macromolecules1995, 28, 2647–2657.

    CAS  Google Scholar 

  44. Horst, R. H.; Winter, H. H. Stable critical gels of a copolymer of ethene and 1-butene achieved by partial melting and recrystallization. Macromolecules2000, 33, 7538–7543.

    CAS  Google Scholar 

  45. Shenoy, A. V. in Rheology of filled polymer systems, Springer, Netherlands, 1999, p. 90.

    Google Scholar 

  46. Wu, D. F.; Wu, L.; Zhang, M.; Zhao, Y. L. Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym. Degrad. Stab.2008, 93, 1577–1584.

    CAS  Google Scholar 

  47. Kota, A. K.; Cipriano, B. H.; Duesterberg, M. K.; Gershon, A. L.; Powell, D.; Raghavan, S. R.; Bruck, H. A. Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules2007, 40, 7400–7406.

    CAS  Google Scholar 

  48. Bouakaz, B. S.; Habi, A.; Grohens, Y.; Pillin, I. Effect of combinations of nanofillers on rheology-structure relations in biodegradable poly(ε-caprolactone) nanocomposites. Appl. Clay. Sci.2018, 161, 35–47.

    CAS  Google Scholar 

  49. Han, C. D.; Kim, J. K. On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer1993, 34, 2533–2539.

    CAS  Google Scholar 

  50. Li, Y.; Han, C. Y.; Bian, J. J.; Han, L. J.; Dong, L. S.; Gao, G. Rheology and biodegradation of polylactide/silica nanocomposites. Polym. Compos.2012, 33, 1719–1727.

    CAS  Google Scholar 

  51. Cole, K. S.; Cole, R. H. Dispersion and absorption in dielectrics: alternating current characteristics. J. Chem. Phys.1941, 9, 341–351.

    CAS  Google Scholar 

  52. Li, H. B.; Li, Q.; Yan, M. L. Influence of operation procedures on Vicat softening temperature of thermoplastic materials. Adv. Mater. Res.2011, 291–294, 1820–1824.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Chinese Academy of science and technology service network planning (No. KFJ-STS-QYZD-140), a program of Cooperation of Hubei Province and Chinese Academy of Sciences, Innovation team project of Beijing Institute of Science and Technology (No. IG201703N) and “13th five-year” Science and Technology Research Program of the Education Department of Jilin Province (No. JJKH20190862KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yu Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yu, YC., Han, CY. et al. Sustainable Blends of Poly(propylene carbonate) and Stereocomplex Polylactide with Enhanced Rheological Properties and Heat Resistance. Chin J Polym Sci 38, 1267–1275 (2020). https://doi.org/10.1007/s10118-020-2408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2408-8

Keywords

Navigation