Skip to main content
Log in

Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Near-infrared light (NIR) triggered transdermal drug delivery systems are of great interest due to their on-demand drug release, which enable to enhance drug treatment efficiency as well as reduce side effect. Herein, a NIR-triggered microneedle (MN) patch array has been fabricated through depositing the photothermal conversion agent and anti-diabetic drug-loaded polymer vesicles with upper critical solution temperature (UCST) into dissolvable polymer matrix. The UCST-type polymer has a clearing point temperature of 41 °C and the drug-loaded polymer vesicles present excellent NIR-triggered and temperature responsive drug release behavior in vitro due to the disassociation of polymer vesicles upon NIR irradiation. After applying MNs to diabetic rats, significant hypoglycemic effect is achieved upon interval NIR irradiation and the blood glucose concentration can decrease to normal state for several hours, which enables to achieve the goal of on-demand drug release. This work suggests that the NIR-triggered MN drug release device has a potential application in the treatment of diabetes, especially for those requiring an active drug release manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davoodi, P.; Lee, L. Y.; Xu, Q.; Sunil, V.; Sun, Y.; Soh, S.; Wang, C. H. Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev. 2018, 132, 104–138.

    Article  CAS  PubMed  Google Scholar 

  2. Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S. M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A. R.; Haghani, L.; Bahrami, S.; Hamblin, M. R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Drews, J. Drug discovery: a historical perspective. Science 2000, 287, 1960–1964.

    Article  CAS  PubMed  Google Scholar 

  4. Tibbitt, M. W.; Dahlman, J. E.; Langer, R. Emerging frontiers in drug delivery. J. Am. Chem. Soc. 2016, 138, 704–717.

    Article  CAS  PubMed  Google Scholar 

  5. Fenton, O. S.; Olafson, K. N.; Pillai, P. S.; Mitchell, M. J.; Langer, R. Advances in biomaterials for drug delivery. Adv. Mater. 2018, 30, 1705328.

    Article  Google Scholar 

  6. Gu, X.; Liu, Y.; Chen, G.; Wang, H.; Shao, C.; Chen, Z.; Lu, P.; Zhao, Y. Mesoporous colloidal photonic crystal particles for intelligent drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 33936–33944.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H.; Ba, S.; Lee, J. Y.; Xie, J.; Loh, T. P.; Li, T. Cancer biomarker-triggered disintegrable DNA nanogels for intelligent drug delivery. Nano Lett. 2020, 20, 8399–8407.

    Article  CAS  PubMed  Google Scholar 

  8. Meng, X.; Gui, B.; Yuan, D.; Zeller, M.; Wang, C. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Sci. Adv. 2016, 2, e1600480.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2017, 2, 16075.

    Article  CAS  Google Scholar 

  10. Lavrador, P.; Esteves, M. R.; Gaspar, V. M.; Mano, J. F. Stimuli-responsive nanocomposite hydrogels for biomedical applications. Adv. Funct. Mater. 2021, 31, 2005941.

    Article  CAS  Google Scholar 

  11. Liu, G.; Zhao, X.; Zhang, Y.; Xu, J.; Xu, J.; Li, Y.; Min, H.; Shi, J.; Zhao, Y.; Wei, J.; Wang, J.; Nie, G. Engineering biomimetic platesomes for pH-responsive drug delivery and enhanced antitumor activity. Adv. Mater. 2019, 31, 1900795.

    Article  Google Scholar 

  12. Xu, C.; Yan, Y.; Tan, J.; Yang, D.; Jia, X.; Wang, L.; Xu, Y.; Cao, S.; Sun, S. Biodegradable nanoparticles of polyacrylic acid-stabilized amorphous CaCO3 for tunable pH-responsive drug delivery and enhanced tumor inhibition. Adv. Funct. Mater. 2019, 29, 1808146.

    Article  Google Scholar 

  13. Lei, Z.; Ju, Y.; Lin, Y.; Bai, X.; Hu, W.; Wang, Y.; Luo, H.; Tong, Z. Reactive oxygen species synergistic pH/H2O2-responsive of poly(L-lactic acid)-block-poly(sodium 4-styrenesulfonate)/citrate-Fe(III)@ZIF-8 hybrid nanocomposites for controlled drug release. ACS Appl. Bio Mater. 2019, 2, 3648–3658.

    Article  CAS  PubMed  Google Scholar 

  14. Lei, Z.; Tang, Q.; Ju, Y.; Lin, Y.; Bai, X.; Luo, H.; Tong, Z. Block copolymer@ZIF-8 nanocomposites as a pH-responsive multisteps release system for controlled drug delivery. J. Biomater. Sci. Polym. Ed. 2020, 31, 695–711.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, J.; Tang, Q.; Zhong, J.; Lei, Z.; Luo, H.; Tong, Z.; G. H. Jiang; Liu, X. D. Construction of glucose and H2O2 dual stimuli-responsive polymeric vesicles and their application in controlled drug delivery. J. Mater. Sci. 2018, 53, 14063–14074.

    Article  CAS  Google Scholar 

  16. Lin, Y.; Hu, W.; Bai, X.; Ju, Y.; Cao, C.; Zou, S.; Tong, Z.; Cen, C.; Jiang, G.; Kong, X. Glucose- and pH-responsive supramolecular polymer vesicles based on host-guest interaction for transcutaneous delivery of insulin. ACS Appl. Bio Mater. 2020, 3, 6376–6383.

    Article  CAS  PubMed  Google Scholar 

  17. Scott, E. A.; Stano, A.; Gillard, M.; Maio-Liu, A. C.; Swartz, M. A.; Hubbell, J. A. Dendritic cell activation and T cell priming with adjuvant- and antigen-loaded oxidation-sensitive polymersomes. Biomaterials 2012, 33, 6211–6219.

    Article  CAS  PubMed  Google Scholar 

  18. Guo, D. S.; Wang, K.; Wang, Y. X.; Liu, Y. Cholinesterase-responsive supramolecular vesicle. J. Am. Chem. Soc. 2012, 134, 10244–10250.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, H.; Zhang, C.; Zhang, Y.; Tian, R.; Cheng, G.; Pan, H.; Cui, M.; Chang, J. An efficient delivery of photosensitizers and hypoxic prodrugs for a tumor combination therapy by membrane camouflage nanoparticles. J. Mat. Chem. B 2020, 8, 2876–2886.

    Article  CAS  Google Scholar 

  20. Yao, C.; Wang, W.; Wang, P.; Zhao, M.; Li, X.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow biophotocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833.

    Article  Google Scholar 

  21. Moughton, A. O.; O’Reilly, R. K. Thermally induced micelle to vesicle morphology transition for a charged chain end diblock copolymer. Chem. Commun. 2010, 46, 1091–1093.

    Article  CAS  Google Scholar 

  22. López-Noriega, A.; Hastings, C. L.; Ozbakir, B.; O’Donnell, K. E.; O’Brien, F. J.; Storm, G.; Hennink, W. E.; Duffy, G. P.; Ruiz-Hernández, E. Hyperthermia-induced drug delivery from thermosensitive liposomes encapsulated in an injectable hydrogel for local chemotherapy. Adv. Healthc. Mater. 2014, 3, 854–859.

    Article  PubMed  Google Scholar 

  23. Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; Parajuli, L. K.; Okabe, S.; Teh, D. B. L.; All, A. H.; Tsutsui-Kimura, I.; Tanaka, K. F.; Liu, X.; McHugh, T. J. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679.

    Article  CAS  PubMed  Google Scholar 

  24. Hu, W.; Bai, X.; Wang, Y.; Lei, Z.; Luo, H; Tong, Z. Upper critical solution temperature polymer-grafted hollow mesoporous silica nanoparticles for near-infrared-irradiated drug release. J. Mat. Chem. B 2019, 7, 5789–5796.

    Article  CAS  Google Scholar 

  25. Wang, J.; Liu, Y.; Ma, Y.; Sun, C.; Tao, W. NIR-activated supersensitive drug release using nanoparticles with a flow core. Adv. Funct. Mater. 2016, 26, 7516–7525.

    Article  CAS  Google Scholar 

  26. Qin, J.; Asempah, I.; Laurent, S.; Fornara, A.; Muller, R. N.; Muhammed, M. Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs. Adv. Mater. 2009, 21, 1354–1357.

    Article  CAS  Google Scholar 

  27. Serrà, A.; Gimeno, N.; Gómez, E.; Mora, M.; Lluïsa Sagristá, M.; Vallés, E. Magnetic mesoporous nanocarriers for drug delivery with improved therapeutic efficacy. Adv. Funct. Mater. 2016, 26, 6601–6611.

    Article  Google Scholar 

  28. Mehrali, M.; Thakur, A.; Pennisi, C. P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi-Pirouz, A. Nanoreinforced hydrogels for tissue engineering: biomaterials that are compatible with load-bearing and electroactive tissues. Adv. Mater. 2017, 29, 1603612.

    Article  Google Scholar 

  29. Kennedy, S.; Hu, J.; Kearney, C.; Skaat, H.; Gu, L.; Gentili, M.; Vandenburgh, H.; Mooney, D. Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Biomaterials 2016, 75, 91–101.

    Article  CAS  PubMed  Google Scholar 

  30. Di, J.; Yu, J.; Wang, Q.; Yao, S.; Suo, D.; Ye, Y.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound-triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017, 10, 1393–1402.

    Article  CAS  Google Scholar 

  31. Wu, Z.; Lin, X.; Zou, X.; Sun, J.; He, Q. Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl. Mater. Interfaces 2015, 7, 250–255.

    Article  CAS  PubMed  Google Scholar 

  32. Tao, Y.; Chan, H. F.; Shi, B.; Li, M.; Leong, K. W. Light: a magical tool for controlled drug delivery. Adv. Funct. Mater. 2020, 30, 2005029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rapp, T. L.; DeForest, C. A. Targeting drug delivery with light: a highly focused approach. Adv. Drug Deliv. Rev. 2021, 171, 94–107.

    Article  CAS  PubMed  Google Scholar 

  34. Alvarez-Lorenzo, C.; Bromberg, L.; Concheiro, A. Light-sensitive intelligent drug delivery systems. Photochem. Photobiol. 2009, 85, 848–860.

    Article  CAS  PubMed  Google Scholar 

  35. Kimura, H.; Lee, C.; Hayashi, K.; Yamauchi, K.; Yamamoto, N.; Tsuchiya, H.; Tomita, K.; Bouvet, M.; Hoffman, R. M. UV light killing efficacy of fluorescent protein-expressing cancer cells in vitro and in vivo. J. Cell. Biochem. 2010, 110, 1439–1446.

    Article  CAS  PubMed  Google Scholar 

  36. Fomina, N.; McFearin, C.; Sermsakdi, M.; Edigin, O.; Almutairi, A. UV and near-IR triggered release from polymeric nanoparticles. J. Am. Chem. Soc. 2010, 132, 9540–9542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sponchioni, M.; Bassam, P. R.; Moscatelli, D.; Arosio, P.; Palmiero, U. C. Biodegradable zwitterionic nanoparticles with tunable UCST-type phase separation under physiological conditions. Nanoscale 2019, 11, 16582–16591.

    Article  CAS  PubMed  Google Scholar 

  38. Zou, Y.; Brooks, D. E.; Kizhakkedathu, J. N. A novel functional polymer with tunable LCST. Macromolecules 2008, 41, 5393–5405.

    Article  CAS  Google Scholar 

  39. Berndt, I.; Richtering, W. Doubly temperature sensitive core-shell microgels. Macromolecules 2003, 36, 8780–8785.

    Article  CAS  Google Scholar 

  40. Seuring, J.; Agarwal, S. First example of a universal and cost-effective approach: polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules 2012, 45, 3910–3918.

    Article  CAS  Google Scholar 

  41. Dong, Z.; Mao, J.; Wang, D.; Yang, M.; Wang, W.; Bo, S.; Ji, X. Tunable dual-thermoresponsive phase behavior of zwitterionic polysulfobetaine copolymers containing poly(N,N- dimethylaminoethyl methacrylate)-grafted silica nanoparticles in aqueous solution. Macromol. Chem. Phys. 2014, 215, 111–120.

    Article  CAS  Google Scholar 

  42. Xue, X.; Thiagarajan, L.; Braim, S.; Saunders, B. R.; Shakesheff, K.; Alexander, C. Upper critical solution temperature thermo-responsive polymer brushes and a mechanism for controlled cell attachment. J. Mat. Chem. B 2017, 5, 4926–4933.

    Article  CAS  Google Scholar 

  43. Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release 2012, 161, 645–655.

    Article  PubMed  Google Scholar 

  44. Kim, Y. C.; Park, J. H.; Prausnitz, M. R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev. 2012, 64, 1547–1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jeong, W. L.; Park, J. H.; Mark, R. P. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008, 29, 2113–2124.

    Article  Google Scholar 

  46. Yu, W.; Jiang, G.; Zhang, Y.; Liu, D.; Xu, B.; Zhou, J. Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats. J. Mat. Chem. B 2017, 5, 9507–9513.

    Article  CAS  Google Scholar 

  47. Liu, D.; Yu, B.; Jiang, G.; Yu, W.; Zhang, Y.; Xu, B. Fabrication of composite microneedles integrated with insulin-loaded CaCO3 microparticles and PVP for transdermal delivery in diabetic rats. Mater. Sci. Eng. C 2018, 90, 180–188.

    Article  CAS  Google Scholar 

  48. Tong, Z.; Zhou, J.; Zhong, J.; Tang, Q.; Lei, Z.; Luo, H.; Ma, P.; Liu, X. Glucose- and H2O2-responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Appl. Mater. Interfaces 2018, 10, 20014–20024.

    Article  CAS  PubMed  Google Scholar 

  49. Ye, Y.; Yu, J.; Wang, C.; Nguyen, N. Y.; Walker, G. M.; Buse, J. B.; Gu, Z. Microneedles integrated with pancreatic cells and synthetic glucose-signal amplifiers for smart insulin delivery. Adv. Mater. 2016, 28, 3115–3121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu, B.; Cao, Q.; Zhang, Y.; Yu, W.; Jiang, G. Microneedles integrated with ZnO quantum dots capped mesoporous bioactive glasses for glucose-mediated insulin delivery. ACS Biomater. Sci. Eng. 2018, 4, 2473–2483.

    Article  CAS  PubMed  Google Scholar 

  51. Niskanen, J.; Tenhu, H. How to manipulate the upper critical solution temperature (UCST)?. Polym. Chem. 2017, 8, 220–232.

    Article  CAS  Google Scholar 

  52. Xu, Z.; Liu, W. Poly(N-acryloyl glycinamide): a fascinating polymer that exhibits a range of properties from UCST to high-strength hydrogels. Chem. Commun. 2018, 54, 10540–10553.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Zhejiang Province (No. LY20E030005) and the Opening Project of Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices (No. PMND201905).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zai-Zai Tong or Chao Cen.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2021_2640_MOESM1_ESM.pdf

Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Su, YW., Jiang, YK. et al. Polymer Vesicles with Upper Critical Solution Temperature for Near-infrared Light-triggered Transdermal Delivery of Metformin in Diabetic Rats. Chin J Polym Sci 40, 157–165 (2022). https://doi.org/10.1007/s10118-021-2640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2640-x

Keywords

Navigation