Skip to main content
Log in

Biogenic Origin of Polymetallic Nodules from the Clarion-Clipperton Zone in the Eastern Pacific Ocean: Electron Microscopic and EDX Evidence

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Polymetallic/ferromanganese nodules (Mn-nodules) have been assigned a huge economic potential since they contain considerable concentrations of manganese, copper, nickel, iron, and cobalt. It has been assumed that they are formed by, besides hydrogenous, nonbiogenic processes, biogenic processes based on metabolic processes driven by microorganisms. In the present study, we applied the techniques of digital optical microscopy and high-resolution scanning electron microscopy to search for microorganisms in Mn-nodules. They were collected from the Clarion-Clipperton Zone in the Eastern Pacific Ocean and are composed of Mn (23.9%), Cu (0.69%), Ni (1.02%), Fe (10.9%), and Co (0.29%). These Mn-nodules, between 2.3 and 4.8 cm, show a distinct lamination; they are composed of small-sized micronodules, 100 to 450 μm in size, which are bound together by an interstitial whitish material. In the micronodules, a dense accumulation of microorganisms/bacteria could be visualized. Only two morphotypes exist: (1) round-shaped cocci and (2) elongated rods. The cocci (diameter: ≈3.5 μm) are arranged in bead-like chains, while the rods (≈2 × 0.4 μm) are arranged either as palisades or in a linear row. Energy-dispersive X-ray spectroscopy analyses showed that the areas rich in microorganisms/bacteria are also rich in Mn, while in regions where no microorganisms are found, the element Si is dominant. We suggest that growth of the Mn-nodules starts with the formation of “micronodules.” The formation of micronodules is assumed to be mediated by microorganisms. After accretion of biogenic and additional nonbiogenic minerals, the micronodules assemble to large nodules on the sea floor through additional inclusion of nonbiogenic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Cahyani VR, Murase J, Ishibashi E, Asakawa S, Kimura M (2007) Bacterial communities in manganese nodules in rice field subsoils: Estimation using PCR-DGGE and sequencing analyses. Soil Sci Plant Nutr 53:575–584

    Article  CAS  Google Scholar 

  • Cha JN, Shimizu K, Zhou Y, Christianssen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci U S A 96:361–365

    Article  PubMed  CAS  Google Scholar 

  • COMECON (1990) Atlas of the morphological types of ferromanganese nodules. Geofyzika, Brno

    Google Scholar 

  • Cronan DS (1975) Manganese nodules and other ferromanganese oxide deposits from the Atlantic Ocean. J Geophys Res 80:3831–3837

    Article  CAS  Google Scholar 

  • de Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849

    Article  PubMed  Google Scholar 

  • Eberl L, Winson MK, Sternberg C (1996) Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Mol Microbiol 20:127–136

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich HL (1963) Bacteriology of manganese nodules. I. Bacterial action on manganese in nodule enrichments. Appl Microbiol 11:15–19

    PubMed  CAS  Google Scholar 

  • Ehrlich HL (1966) Reaction with manganese by bacteria from marine ferromanganese nodules. Dev Ind Microbiol 7:43–60

    Google Scholar 

  • Ehrlich HL (1968) Bacteriology of manganese nodules. II. Manganese oxidation by cell-free extract from a manganese nodule bacterium. Appl Microbiol 16:197–202

    PubMed  CAS  Google Scholar 

  • Ehrlich HL (1971) Bacteriology of manganese nodules. V. Effect of elydrostatic pressure on bacterial oxidation of MnII and reduction of MnO2. Appl Microbiol 21:306–310

    CAS  Google Scholar 

  • Eisler R (1981) Trace metal concentrations in marine organisms. Pergamon, New York

    Google Scholar 

  • Francis CA, Co EM, Tebo BM (2001) Enzymatic manganese(II) oxidation by a marine a-proteobacterium. Appl Environ Microbiol 67:4024–4029

    Article  PubMed  CAS  Google Scholar 

  • Halbach P, Puteanus D (1988) Internal texture. In: Halbach P, Friedrich G, Stackelberg U (eds) The manganese nodule belt of the Pacific Ocean. Enke, Stuttgart, pp 51–57

    Google Scholar 

  • Halbach P, Friedrich G, Stackelberg U v (1988) The manganese nodule belt of the Pacific Ocean. Enke, Stuttgart

    Google Scholar 

  • Inagaki F, Motomura Y, Ogata S (2003) Microbial silica deposition in geothermal hot waters. Appl Microbiol Biotechnol 60:605–611

    PubMed  CAS  Google Scholar 

  • Jauhari P, Pattan JN (2000) Ferromanganese nodules from the central Indian Ocean basin. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC, Boca Raton, pp 171–195

    Google Scholar 

  • Krasko A, Batel R, Schröder HC, Müller IM, Müller WEG (2000) Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. Eur J Biochem 267:4878–4887

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, Noh SR, Cho KS, Ryu HW (2001) Leaching of Mn, Co, and Ni from manganese nodules using an anaerobic bioleaching method. J Biosci Bioeng 92:354–359

    Article  PubMed  CAS  Google Scholar 

  • Lenoble JP (2000) Polymetallic nodules. International Seabed Authority, Kingston (1/10/00)

    Google Scholar 

  • Meixun P, Xiangqian S (2007) Template growth mechanism of spherical Ni(OH)2. J Cent South Univ Technol 14:310–314

    Google Scholar 

  • Mero JL (1962) Ocean-floor manganese nodules. Econ Geol 57:747–767

    Article  CAS  Google Scholar 

  • Morgan CL (2000) Resource estimates of the Clarion-Clipperton Mn-nodule deposits. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC, Boca Raton, pp 145–170

    Google Scholar 

  • Müller WEG, Belikov SI, Tremel W, Perry CC, Gieskes WWC, Boreiko A, Schröder HC (2006) Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37:107–120

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG, Engel S, Wang X, Wolf SE, Tremel W, Thakur NL, Krasko A, Divekar M, Schröder HC (2008a) Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. Biomaterials 29:771–779

    Article  PubMed  CAS  Google Scholar 

  • Müller WEG, Schloßmacher U, Wang X, Boreiko A, Brandt D, Stephan EW, Tremel W, Schröder HC (2008b) Poly(silicate)-metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica-polymerase and silica-esterase). FEBS J 275:362–370

    Article  PubMed  CAS  Google Scholar 

  • Murray J (1891) Report on the scientific results of the voyage of H. M. S. Challenger during the years 1873–76. Deep sea deposits. H. M. S. Stationery Office, London

    Google Scholar 

  • Murray JW, Balistieri LS, Paul B (1984) The oxidation state of manganese in marine sediments and ferromanganese nodules. Geochim Cosmochim Acta 48:1237–1247

    Article  CAS  Google Scholar 

  • Nealson KH, Tebo BM, Rosson RA (1988) Occurrence and mechanisms of microbial oxidation of manganese. Adv Appl Microbiol 33:279–318

    Article  CAS  Google Scholar 

  • Novikov GV, Murdmaa IO (2007) Ion exchange properties of oceanic ferromanganese and enclosing pelagic sediments. Lithol Miner Resour 42:137–167

    Article  CAS  Google Scholar 

  • Nyame FK, Beukes NJ, Kase K, Yamamoto M (2002) Compositional variations in manganese carbonate micronodules from the lower proterozoic Nsuta deposit, Ghana: product of authigenic precipitation or post-formational diagenesis? Sediment Geol 154:159–175

    Article  Google Scholar 

  • Poulsen N, Sumper M, Kröger N (2003) Biosilica formation in diatoms: native silaffin-2 and its role. Proc Natl Acad Sci U S A 100:12075–12080

    Article  PubMed  CAS  Google Scholar 

  • Rossi G, Ehrlich HL (1990) Other bioleaching processes. In: Ehrlich HL, Brierley CL (eds) Microbial mineral leaching. McGraw-Hill, New York, pp 149–170

    Google Scholar 

  • Ryan KJ, Ray CG (eds) (2004) In: Sherris medical microbiology. 4th edn. McGraw Hill, New York

  • Shimizu K, Cha J, Stucky GD, Morse DE (1998) Silicatein alpha: cathepsin L-like protein in sponge biosilica. Proc Natl Acad Sci U S A 95:6234–6238

    Article  PubMed  CAS  Google Scholar 

  • Sondervan PJ (2001) The relationship of calcium loss with trace element concentrations in seawater life systems. Bulletin de l’Institut Océanographique, Monaco, 20, fascicule 1

  • Stackelberg Uv (2000) Manganese nodules pf the Peru Basin. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC, Boca Raton, pp 197–238

    Google Scholar 

  • Szeto J, Ramirez-Arcos S, Raymond C, Hicks LD, Kay CM, Dillon JAR (2001) Gonococcal MinD affects cell division in Neisseria gonorrhoeae and Escherichia coli and exhibits a novel self-interaction. J Bacteriol 183:6253–6264

    Article  PubMed  CAS  Google Scholar 

  • Tateda K, Ishii Y, Kimura S, Yamaguchi K (2007) Suppression of Pseudomonas aeruginosa quorum-sensing systems by macrolides: a promising strategy or an oriental mystery? J Infect Chemother 13:357–367

    Article  PubMed  CAS  Google Scholar 

  • Tebo BM, Ghiorse WC, van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: insights into manganese(II) oxidation from molecular genetic and biochemical studies. Rev Mineral 35:225–266

    CAS  Google Scholar 

  • Tebo BM, Johnson HA, McCarthy JK, Templeton AS (2005) Geomicrobiology of manganese(II) oxidation. Trends Microbiol 13:421–428

    Article  PubMed  CAS  Google Scholar 

  • Thiel GA (1925) Manganese precipitated by microorganisms. Econ Geol 20:301–310

    CAS  Google Scholar 

  • Tien JK, Howson TE (1981) Nickel and nickel alloys. In: Kirk-Othmer E (ed) Encyclopedia of chemical technology. Wiley, New York, pp 787–801

    Google Scholar 

  • Toner B, Fakra S, Villalobos M, Warwick T, Sposito G (2005) Spatially resolved characterization of biogenic manganese oxide production within a bacterial biofilm. Appl Environ Microbiol 71:1300–1310

    Article  PubMed  CAS  Google Scholar 

  • Wang XH, Bu SB, Gao XH, Hao GZ, Zhang SY, Wang YM (2000) Rapid analysis of mulit-elements in polymetallic nodule by XRF. J Instrum Anal 19:1–4 (in Chinese)

    Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Mineral Geochem 54:1–29

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Mr. G. Glasser and Ms. M. Müller (Research group “Surface Chemistry” Dr. I. Lieberwirth and Dr M. Kappl; Max Planck Institute for Polymer Research; Mainz) for excellent assistance in electron microscopic analysis. We thank Prof. Dr. G.N. Baturin (Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow) for helpful advices. This work was supported by grants from the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin), from International S & T Cooperation Program of China (Grant No. 2008DFA00980) and from the Key Laboratory of Marine Sedimentology and Environmental Geology, State Oceanic Administration (Grant No. MASEG200602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Wang or Werner E. G. Müller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Schloßmacher, U., Wiens, M. et al. Biogenic Origin of Polymetallic Nodules from the Clarion-Clipperton Zone in the Eastern Pacific Ocean: Electron Microscopic and EDX Evidence. Mar Biotechnol 11, 99–108 (2009). https://doi.org/10.1007/s10126-008-9124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9124-7

Keywords

Navigation