Skip to main content
Log in

Inhibitory Effects of a Branched-Chain Fatty Acid on Larval Settlement of the Polychaete Hydroides elegans

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Eleven strains of Streptomyces isolated from deep-sea sediments were screened for anti-larval settlement activity and all were active. Among those strains, Streptomyces sp. UST040711-290 was chosen for the isolation of bioactive antifouling compounds through bioassay-guided isolation procedure. A branched-chain fatty acid, 12-methyltetradecanoid acid (12-MTA) was purified, and it strongly inhibited the larval settlement of the polychaete Hydroides elegans. Streptomyces sp. UST040711-290 produced the highest yield of 12-MTA when the bacterium was cultured at 30°C and pH 7.0 in a modified MGY medium. To investigate the potential antifouling mechanism of 12-MTA in the larval settlement of Hydroides elegans, the expression level of four marker genes, namely, Ran GTPase activating protein (GAP), ATP synthase (AS), NADH dehydrogenase (ND), and cell division cycle protein (CDC), was compared among the untreated larvae (the control), isobutylmethylxanthine (an effective settlement inducer), and 12-MTA-treated larvae. The 12-MTA treatment down-regulated the expression of GAP and up-regulated the expression of AS in the H. elegans larvae, but did not affect the expression of ND and CDC. This study provides the first evidence that a branched-chain fatty acid produced by a marine bacterium isolated from deep-sea sediment effectively inhibited the larval settlement of the biofouling polychaete H. elegans and its effects on the expression of genes important for larval settlement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alberte RS, Snyder S, Zahuranec B (1992) Biofouling research needs for the United States Navy: program history and goals. Biofouling 6:91–95

    Article  Google Scholar 

  • Alzieu C (2000) Environmental impact of TBT: the French experience. Sci Total Environ 258:99–102

    Article  PubMed  CAS  Google Scholar 

  • An J, Yuan Q, Wang C, Liu L, Tang K, Tian HY, Jing NH, Zhao FK (2005) Differential display of proteins involved in the neural differentiation of mouse embryonic carcinoma P19 cells by comparative proteomic analysis. Proteomics 5:1656–1668

    Article  PubMed  CAS  Google Scholar 

  • Bernards A (2003) GAPs galore! A survey of putative Ras superfamily GTPase activating proteins in man and Drosophila. Biochim Biophys Acta 1603:47–82

    PubMed  CAS  Google Scholar 

  • Berry RM (2005) ATP synthesis: the world’s smallest wind-up toy. Curr Biol 15:385–387

    Article  CAS  Google Scholar 

  • Chyb S, Raghu P, Hardie RC (1999) Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Nature 397:255–259

    Article  PubMed  CAS  Google Scholar 

  • Deming JW (1998) Deep ocean environmental biotechnology. Curr Opin Biotechnol 9:283–287

    Article  PubMed  CAS  Google Scholar 

  • Dobretsov SV, Dahms HU, Qian PY (2006) Inhibition of biofouling by marine microorganisms and their metabolites. Biofouling 22:43–54

    Article  PubMed  CAS  Google Scholar 

  • Dobretsov S, Xiong H, Xu Y, Levin LA, Qian PY (2007) Novel antifoulants: inhibition of larval attachment by proteases. Mar Biotechnol 9:388–397

    Article  PubMed  CAS  Google Scholar 

  • Dworjanyn SA, de Nys R, Steinberg PD (2006) Chemically mediated antifouling in the red alga Delisea pulchra. Mar Ecol Prog Ser 318:153–163

    Article  CAS  Google Scholar 

  • Hadfield MG, Unabia CC, Smith CM, Michael TM (1994) Settlement preferences of the ubiquitious fouler Hydroides elegans. In Thompson MF, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent development in biofouling control. Balkema, Rotterdam, pp 65–74

    Google Scholar 

  • Haygood MG, Schmidt EW, Davidson SK, Faulkner DJ (2000) Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J Mol Microbiol Biotechnol 1:33–43

    Google Scholar 

  • Hellio C, Tsoukatou M, Maréchal JP, Aldred N, Beaupoil C, Clare AS, Vagias C, Roussis V (2005) Inhibitory effects of Mediterranean sponge extracts and metabolites on larval settlement of the barnacle, Balanus amphitrite. Mar Biotechnol 7:297–305

    Article  PubMed  CAS  Google Scholar 

  • HolmstrÖm C, Kjelleberg S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293

    PubMed  Google Scholar 

  • Hradec J, Dufek P (1994) Determination of cholesteryl 14-methylhexadecanoate in blood serum by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Appl 660:386–389

    Article  PubMed  CAS  Google Scholar 

  • Jensen PR, Jenkins KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against zoosporic fungi. Appl Environ Microbiol 64:1490–1496

    PubMed  CAS  Google Scholar 

  • Jones SL, Drouin P, Wilkinson BJ, Morse PD (2002) Correlation of long-range membrane order with temperature-dependent growth characteristics of parent and a cold-sensitive, branched-chain-fatty-acid-deficient mutant of Listeria monocytogenes. Arch Microbiol 177:217–222

    Article  PubMed  CAS  Google Scholar 

  • Kahn-Kirby AH, Dantzker JLM, Apcella AJ, Schafer WR, Browse J, Bargmann CI, Watts JL (2004) Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 119:889–900

    Article  PubMed  CAS  Google Scholar 

  • Kim MH, Kong YJ, Baek H, Hyun HH (2006) Optimization of culture conditions and medium composition for the production of micrococcin GO5 by Micrococcus sp. GO5. J Biotechnol 121:54–61

    Article  PubMed  CAS  Google Scholar 

  • Konstantinou K, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment. Environ Int 30:235–248

    Article  PubMed  CAS  Google Scholar 

  • Kniazeva M, Crawford QT, Seiber M, Wang CY, Han M (2004) Monomethyl branched-chain fatty acids play an essential role in Caenorhabditis elegans development. PLoS Biol 2:e257

    Article  PubMed  CAS  Google Scholar 

  • Lesa GM, Palfreyman M, Hall DH, Clandinin MT, Rudolph C, Jorgensen EM, Schiavo G (2003) Long chain polyunsaturated fatty acids are required for efficient neurotransmission in C. elegans. J Cell Sci 116:4965–4975

    Article  PubMed  CAS  Google Scholar 

  • Li HL (2007) Investigation of genes involved in larval attachment and metamorphosis of biofouling species Hydroides elegans and Balanus amphitrite. PhD thesis, The Hong Kong University of Science and Technology, p 245

  • Lindsey R, Momany M (2006) Septin localization across kingdoms: three themes with variations. Curr Opin Microbiol 9:559–565

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra BR, Gould WD, Dinardo O, Papavinasam S, Revie RW (2006) Optimization of culture conditions and properties of immobilized sulfide oxidase from Arthrobacter species. J Biotechnol 124:523–531

    Article  PubMed  CAS  Google Scholar 

  • Mori K (2007) Significance of chirality in pheromone science. Bioorg Med Chem 15:7505–7523

    Article  PubMed  CAS  Google Scholar 

  • Oehlmann J, Fioroni P, Stroben E, Markert B (1996) Tributyltin (TBT) effects on Ocinebrina-aciculata (Gastropoda, Muricidae)-imposex development, sterilization, sex-change and population decline. Sci Total Environ 188:205–223

    Article  CAS  Google Scholar 

  • Onuma Y, Nishihara R, Takahashi S, Tanegashima K, Fukui A, Asashima M (2000) Expression of the Xenopus GTP-binding protein gene Ran during embryogenesis. Dev Genes Evol 210:325–327

    Article  PubMed  CAS  Google Scholar 

  • Paradkar A, Trefzer A, Chakraburtty R, Stassi D (2003) Streptomyces genetics: a genomic perspective. Crit Rev Biotechnol 23:1–27

    Article  PubMed  CAS  Google Scholar 

  • Pechenic JA, Qian PY (1998) Onset and maintenance of metamorphic competence in the marine polychaete Hydroides elegans Haswell in response to three chemical cues. J Exp Mar Biol Ecol 226:51–74

    Article  Google Scholar 

  • Piel J (2006) Bacterial symbionts: Prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50

    Article  PubMed  CAS  Google Scholar 

  • Prough RA, Linder MW, Pinaire JA, Xiao GH, Falkner KC (1996) Hormonal regulation of hepatic enzymes involved in foreign compound metabolism. FASEB J 10:1369–1377

    PubMed  CAS  Google Scholar 

  • Rittschof D, Lai CH, Kok LM, Teo SL (2003) Pharmaceuticals as antifoulants: concept and principles. Biofouling 19:207–212

    Article  PubMed  CAS  Google Scholar 

  • Russell SEH, Hall PA (2005) Do septins have a role in cancer? Br J Cancer 93:499–503

    Article  PubMed  CAS  Google Scholar 

  • Spiliotis ET, Nelson WJ (2006) Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci 119:4–10

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye D, Ponsuksili S, Wimmers K, Gilles M, Schellander K (2004) A comparative expression analysis of gene transcripts in post-fertilization developmental stages of bovine embryos produced in vitro or in vivo. Reprod Domest Anim 39:396–404

    Article  PubMed  CAS  Google Scholar 

  • Townsin RL (2003) The ship hull fouling penalty. Biofouling 19:9–15

    Article  PubMed  Google Scholar 

  • Tuhackova Z, Hradec J (1985) The role of cholesteryl 14-methylhexadecanoate in the function of eukaryotic peptide elongation factor 1. Eur J Biochem 146:365–370

    Article  PubMed  CAS  Google Scholar 

  • van de Vossenberg JL, Driessen AJ, da Costa MS, Konings WN (1999) Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim Biophys Acta 1419:97–104

    Article  PubMed  Google Scholar 

  • Watts JL, Phillips E, Griffing KR, Browse J (2003) Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants. Genetics 163:581–589

    PubMed  CAS  Google Scholar 

  • Wilsanand V, Wagh AB, Bapuji M (2001) Antifouling activities of octocorals on some marine microfoulers. Microbios 104:131–140

    PubMed  CAS  Google Scholar 

  • Wright KC, Yang P, Van Pelt CS, Hicks ME, Collin P, Newman RA (2005) Evaluation of targeted arterial delivery of the branched chain fatty acid 12-methyltetradecanoic acid as a novel therapy for solid tumors. J Exp Ther Oncol 5:55–68

    PubMed  Google Scholar 

  • Xu Y, Miao L, Li XC, Xiao X, Qian PY (2007) Antibacterial and antilarval activity of deep-sea bacteria from sediments of the West Pacific Ocean. Biofouling 23:131–137

    Article  PubMed  Google Scholar 

  • Yang Z, Liu S, Chen X, Chen H, Huang M, Zheng JP (2000) Induction of apoptotic cell death and in vivo growth inhibition of human cancer cells by a saturated branched-chain fatty acids, 13-methyltetradecanoic acid. Cancer Res 60:505–509

    PubMed  CAS  Google Scholar 

  • Yang P, Collin P, Madden T, Chan D, Sweeney-Gotsch B, McConkey D, Newman RA (2003) Inhibition of proliferation of PC3 cells by the branched-chain fatty acid, 12-methyltetradecanoic acid, is associated with inhibition of 5-lipoxygenase. Prostate 55:281–291

    Article  PubMed  CAS  Google Scholar 

  • Yebra DM, Kill S, Dam-Johansen K (2004) Anti-fouling technology: past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat 50:75–104

    Article  CAS  Google Scholar 

  • Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a RGC grant (HKUST6418/06M) from the Hong Kong SAR and a grant from China Ocean Mineral Resources Research and Development Association (COMRRDA06/07.Sc02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-Yuan Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Li, H., Li, X. et al. Inhibitory Effects of a Branched-Chain Fatty Acid on Larval Settlement of the Polychaete Hydroides elegans . Mar Biotechnol 11, 495–504 (2009). https://doi.org/10.1007/s10126-008-9161-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-008-9161-2

Keywords

Navigation