Skip to main content

Advertisement

Log in

Farming Sponges to Supply Bioactive Metabolites and Bath Sponges: A Review

  • Invited Review
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Sponges have been experimentally farmed for over 100 years, with early attempts done in the sea to supply “bath sponges”. During the last 20 years, sponges have also been experimentally cultured both in the sea and in tanks on land for their biologically active metabolites, some of which have pharmaceutical potential. Sea-based farming studies have focused on developing good farming structures and identifying the optimal environmental conditions that promote production of bath sponges or bioactive metabolites. The ideal farming structure will vary between species and regions, but will generally involve threading sponges on rope or placing them inside mesh. For land-based sponge culture, most research has focused on determining the feeding requirements that promote growth. Many sea- and land-based studies have shown that sponges grow quickly, often doubling in size every few months. Other favorable results and interesting developments include partially harvesting farmed sponges to increase biomass yields, seeding sexually reproduced larvae on farming structures, using sponge farms as large biofilters to control microbial populations, and manipulating culture conditions to promote metabolite biosynthesis. Even though some results are promising, land-based culture needs further research and is not likely to be commercially feasible in the near future. Sea-based culture still holds great promise, with several small-scale farming operations producing bath sponges or metabolites. The greatest potential for commercial bath sponge culture is probably for underdeveloped coastal communities, where it can provide an alternative and environmentally friendly source of income.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams C, Stevely J, Sweat D (1995) Economic feasibility of small-scale sponge farming in Pohnpei, Federated States of Micronesia. J World Aquac Soc 26:132–142

    Article  Google Scholar 

  • Ayling AL (1983) Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biol Bull 165:343–352

    Article  Google Scholar 

  • Barthel D, Theede H (1986) A new method for the culture of marine sponges and its application for experimental studies. Ophelia 25:75–82

    Google Scholar 

  • Belarbi EH, Dominguez MR, Carcia MCC, Gómez AC, Camacho G, Grima EM (2003) Cultivation of explants of the marine sponge Crambe crambe in closed systems. Biomolecular Engineering 20:333–337

    Article  CAS  Google Scholar 

  • Bergquist PR (1978) Sponges. University of California Press, Berkeley

    Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MHG, Northcote PT, Prinsep MR (2009) Marine natural products: review. Nat Prod Rep 26:170–244

    Article  CAS  PubMed  Google Scholar 

  • Cheshire AC, Butler AJ, Westphalen G, Rowland B, Steveson J, Wilkinson CR (1995) Preliminary study of the distribution and photophysiology of the temperate phototrophic sponge Cymbastela sp. from South Australia. Mar Freshw Res 46:1211–1216

    Article  Google Scholar 

  • Corriero G, Longo C, Mercurio M, Marzano CN, Lembo G, Spedicato MT (2004) Rearing performance of Spongia officinalis on suspended ropes off the Southern Italian Coast (Central Mediterranean Sea). Aquaculture 238:195–205

    Article  Google Scholar 

  • Crawshay LR (1939) Studies in the market sponges. I. Growth from the planted cutting. J Mar Biol Assoc UK 23:553–574

    Article  Google Scholar 

  • de Caralt S, Otjens H, Uriz MJ, Wijffels RH (2007) Cultivation of sponge larvae: settlement, survival, and growth of juveniles. Mar Biotechnol 9:592–605

    Article  CAS  PubMed  Google Scholar 

  • de Garalt S, Agell G, Uriz MJ (2003) Long-term culture of sponge explants: conditions enhancing survival and growth, and assessment of bioactivity. Biomolecular Engineering 20:339–347

    Article  CAS  Google Scholar 

  • de Voogd NJ (2007) The mariculture potential of the Indonesian reef-dwelling sponge Callyspongia (Euplacella) biru: growth, survival and bioactive compounds. Aquaculture 262:54–64

    Article  CAS  Google Scholar 

  • Dubios R (1914) Spongiculture par essaimage. IX Congres International de Zoologie de Monaco, Obertur, Rennes, pp 659–660

    Google Scholar 

  • Duckworth AR (2003) Effect of wound size on the growth and regeneration of two temperate subtidal sponges. J Exp Mar Biol Ecol 287:139–153

    Article  Google Scholar 

  • Duckworth AR, Battershill CN (2003a) Developing farming structures for production of biologically active sponge metabolites. Aquaculture 217:139–156

    Article  CAS  Google Scholar 

  • Duckworth AR, Battershill CN (2003b) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and the environment. Aquaculture 221:311–329

    Article  Google Scholar 

  • Duckworth AR, Pomponi SA (2005) Relative importance of bacteria, microalgae and yeast for growth of the sponge Halichondria melanadocia (De Laubenfels, 1936): a laboratory study. J Exp Mar Biol Ecol 323:151–159

    Article  Google Scholar 

  • Duckworth AR, Wolff CW (2007) Bath sponge aquaculture in Torres Strait, Australia: effect of explant size, farming method and the environment on culture success. Aquaculture 271:188–195

    Article  Google Scholar 

  • Duckworth AR, Battershill CN, Bergquist PR (1997) Influence of explant procedures and environmental factors on culture success of three sponges. Aquaculture 156:251–267

    Article  Google Scholar 

  • Duckworth AR, Battershill CN, Schiel DR (2004) Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons. Aquaculture 242:237–250

    Article  Google Scholar 

  • Duckworth AR, Wolff C, Evans-Illidge E (2007) Developing methods for commercially farming bath sponges in tropical Australia. In: Custódio MR, Hajdu E, Lôbo-Hajdu G, Muricy G (eds) Porifera Research: Biodiversity, Innovation and Sustainability. Rio de Janeiro Museu Nacional, pp 297–302

  • Duckworth AR, Samples GA, Wright AE, Pomponi SA (2003) In vitro culture of the tropical sponge Axinella corrugata (Demospongiae): effect of food cell concentration on growth, clearance rate, and biosynthesis of stevensine. Mar Biotechnol 5:519–527

    Article  CAS  PubMed  Google Scholar 

  • Duckworth AR, Brück WM, Janda KE, Pitts TP, McCarthy PJ (2006) Retention efficiencies of the coral reef sponges Aplysina lacunosa, Callyspongia vaginalis and Niphates digitalis determined by Coulter counter and plate culture analysis. Mar Biol Res 2:243–248

    Article  Google Scholar 

  • FAO (2004) Collation, analysis and dissemination of global and regional fishery statistics. Food and Agricuture Organisation, Fishery Information, Data and Statistics Unit, Rome

    Google Scholar 

  • Ferretti C (2006) Aquaculture of two Mediterranean sponge species for bioactive molecules production. Dipartimento per lo Studio del Territorio e delle sue Risorse

  • Ferretti C, Vacca S, de Ciucis C, Marengo B, Duckworth AR, Manconi R, Pronzato R, Domenicotti C (2009) Growth dynamics and bioactivity variation of the Mediterranean demosponges Agelas oroides (Agelasida, Agelasidae) and Petrosia ficiformis (Haplosclerida, Petrosiidae). Marine Ecology (in press)

  • Gaino E, Pronzato R (1989) Ultrastructural evidence of bacterial damage to Spongia officinalis fibres (Porifera, Demospongiae). Dis Aquat Org 6:67–74

    Article  Google Scholar 

  • Garcia Camacho E, Chileh T, Cerón García MC, Sánchez Mirón A, Belarbi EH, Chisti Y, Molina Crima E (2006a) A bioreaction-diffusion model for growth of marine sponge explants in bioreactors. Appl Microbiol Biotechnol 73:525–532

    Article  CAS  PubMed  Google Scholar 

  • Garcia Camacho F, Chileh T, Cerón García MC, Sánchez Mirón A, Belarbi EH, Contreras Gómez A, Molina Crima E (2006b) Sustained growth of explants from Mediterranean sponge Crambe crambe cultured in vitro with enriched RPMI 1640. Biotechnol Prog 22:781–790

    Article  CAS  PubMed  Google Scholar 

  • Hadas E, Shpigel M, Ilan M (2005) Sea ranching of the marine sponge Negombata magnifica (Demospongiae, Latrunculiidae) as a first step for latrunculin B mass production. Aquaculture 244:159–169

    Article  CAS  Google Scholar 

  • Handley SJ, Kelly S, Kelly M (2003) Non-destructive video image analysis method for measuring growth in sponge farming: preliminary results from the New Zealand bath-sponge Spongia (Heterofibria) manipulatus. NZ J Mar Freshwat Res 37:613–621

    Google Scholar 

  • Handley SJ, Page MJ, Northcote PT (2006) Anti-cancer sponge: the race is on for aquaculture supply. Water Atmos 14:14–15

    Google Scholar 

  • Hummel H, Sepers ABJ, de Wolf L, Melissen FW (1988) Bacterial growth on the marine sponge Halichondria panicea induced by reduced waterflow rate. Mar Ecol Prog Ser 42:195–198

    Article  Google Scholar 

  • Jokiel PL (1980) Solar ultraviolet radiation and coral reef epifauna. Science 207:1069–1071

    Article  PubMed  CAS  Google Scholar 

  • Kelly M, Handley SJ, Page MJ, Butterfield P, Hartill B, Kelly S (2004) Aquaculture trials of the New Zealand bath-sponge Spongia (Heterofibria) manipulatus using lanterns. NZ J Mar Freshwat Res 38:231–241

    Google Scholar 

  • Kreuter MH, Robitzki AR, Chang S, Steffen R, Michaelis M, Kljajic Z, Bachmann M, Schröder HC, Müller WEG (1992) Production of the cytostatic agent aeroplysinin by the sponge Verongia aerophoba in in vitro culture. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 101:183–187

    CAS  Google Scholar 

  • Lauckner G (1980) Diseases of Porifera. In: Kinne O (ed) Diseases of marine animals. Wiley, Chichester, pp 139–165

    Google Scholar 

  • Leichter JJ, Witman JD (1997) Water flow over subtidal rock walls: relation to distributions and growth rates of sessile suspension feeders in the Gulf of Maine. J Exp Mar Biol Ecol 209:293–307

    Article  Google Scholar 

  • Louden D, Whalan S, Evans-Illidge E, Wolff C, de Nys R (2007) An assessment of the aquaculture potential of the tropical sponges Rhopaloeides odorabile and Coscinoderma sp. Aquaculture 270:57–67

    Article  Google Scholar 

  • MacMillan SM (1996) Starting a successful commercial sponge aquaculture farm. Center for Tropical and Subtropical Aquaculture, University of Hawaii, Honolulu

    Google Scholar 

  • Mendola D (2003) Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomolecular Engineering 20:441–458

    Article  CAS  PubMed  Google Scholar 

  • Milanese M, Sarà M, Manconi R, Ben Abdalla A, Pronzato R (2008) Commercial sponge fishing in Libya: historical records, present status and perspectives. Fish Res 89:90–96

    Article  Google Scholar 

  • Milanese M, Chelossi E, Manconi R, Sarà M, Sidri M, Pronzato R (2003) The marine sponge Chondrilla nucula Schmidt, 1862 as an elective candidate for bioremediation in integrated aquaculture. Biomolecular Engineering 20:363–368

    Article  CAS  PubMed  Google Scholar 

  • Moore HF (1910) A practical method of sponge culture. Bulletin of the United States Bureau of Fisheries 28(1908, Pt. 1):545–585

    Google Scholar 

  • Müller WEG, Wimmer W, Schatton W, Böhm M, Batel R, Filic Z (1999) Initiation of an aquaculture of sponges for the sustainable production of bioactive metabolites in open systems: example, Geodia cydonium. Mar Biotechnol 1:569–579

    Article  PubMed  Google Scholar 

  • Müller WEG, Grebenjuk VA, Le Pennec G, Schröder HC, Brümmer F, Hentschel U, Müller IM, Breter HJ (2004) Sustainable production of bioactive compounds by sponges-cell culture and gene cluster approach: a review. Mar Biotechnol 6:105–117

    Article  PubMed  CAS  Google Scholar 

  • Nickel M, Brümmer F (2003) In vitro sponge fragment culture of Chondrosia reniformis (Nardo, 1847). J Biotechnol 100:147–159

    Article  CAS  PubMed  Google Scholar 

  • Nickel M, Leininger S, Proll G, Brümmer F (2001) Comparative studies on two potential methods for the biotechnological production of sponge biomass. J Biotechnol 92:169–178

    Article  CAS  PubMed  Google Scholar 

  • OEA (2004) Aquaculture profile for Pohnpei Federated States of Micronesia. Office of Economic Affairs, State of Pohnpei

    Google Scholar 

  • Osinga R, Tramper J, Wijffels RH (1999a) Cultivation of marine sponges. Mar Biotechnol 1:509–532

    Article  CAS  PubMed  Google Scholar 

  • Osinga R, Planas Muela E, Tramper J, Wijffels RH (1997) In vitro cultivation of four marine sponge species. Determination of the nutritional demands. In: Le Gal Y, Muller-Feuga A (eds) Marine microorganisms for industry. Ifremer, France, pp 121–127

    Google Scholar 

  • Osinga R, Belarbi EH, Grima EM, Tramper J, Wijffels RH (2003) Progress towards a controlled culture of the marine sponge Pseudosubertes andrewsi in a bioreactor. J Biotechnol 100:141–146

    Article  CAS  PubMed  Google Scholar 

  • Osinga R, de Beukelaer P, Meijer EM, Tramper J, Wijffels RH (1999b) Growth of the sponge Pseudosuberites (aff.) andrewsi in a closed system. J Biotechnol 70:155–161

    Article  CAS  Google Scholar 

  • Osinga R, Kleijn R, Groenendijk E, Neiink P, Tramper J, Wijffels RH (2001) Development of in vivo sponge cultures: particle feeding by the tropical sponge Pseudosuberites aff. andrewsi. Mar Biotechnol 3:544–554

    Article  CAS  PubMed  Google Scholar 

  • Page MJ, Northcote PT, Webb VL, Mackey S, Handley SJ (2005) Aquaculture trials for the production of biologically active metabolites in the New Zealand sponge Mycale hentscheli (Demospongiae: Poecilosclerida). Aquaculture 250:256–269

    Article  CAS  Google Scholar 

  • Palumbi SR (1984) Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 295:685–687

    Google Scholar 

  • Pile AJ, Patterson MR, Witman JD (1996) In situ grazing on plankton <10 µm by the boreal sponge Mycale lingua. Mar Ecol Prog Ser 141:95–102

    Article  Google Scholar 

  • Pomponi SA (2006) Biology of the Porifera: cell culture. Can J Zool 84:167–174

    Article  CAS  Google Scholar 

  • Pronzato R (1999) Sponge-fishing, disease and farming in the Mediterranean Sea. Aquatic Conservation: Marine and Freshwater Ecosystems 9:485–493

    Article  Google Scholar 

  • Pronzato R (2004) A climber sponge. Bollettino Dei Musei E Degli Istituti Biologici Dell'Universita Di Genova 68:549–552

    Google Scholar 

  • Pronzato R, Manconi R (2008) Mediterranean commercial sponges: over 5000 years of natural history and cultural heritage. Marine Ecol 29:146–166

    Article  Google Scholar 

  • Pronzato R, Bavestrello G, Cerrano C, Magnino G, Manconi R, Pantelis J, Sarà M, Sidri M (1999) Sponge farming in the Mediterranean Sea: new perspectives. Mem Queensl Mus 44:485–491

    Google Scholar 

  • Reiswig HM (1971) Particle feeding in natural populations of three marine demosponges. Biol Bull 141:568–591

    Article  Google Scholar 

  • Ribes M, Coma R, Gili JM (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176:179–190

    Article  Google Scholar 

  • Schmitz FJ, Bowden BF, Toth SI (1993) Antitumor and cytotoxic compounds from marine organisms. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology. Pharmaceutical and bioactive natural products. Plenum, New York, pp 197–308

    Google Scholar 

  • Sebens KP (1987) The ecology of indeterminate growth in animals. Annu Rev Ecol Syst 18:371–407

    Article  Google Scholar 

  • Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijffels RH (2005) Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis. Biotechnol Bioeng 90:201–222

    Article  CAS  PubMed  Google Scholar 

  • Smith FGW (1941) Sponge disease in British Honduras, and its transmission by water currents. Ecology 22:415–421

    Article  Google Scholar 

  • Storr JF (1957) The sponge industry of Florida. State of Florida, Board of Conservation, Educational Series No. 9

  • Storr JF (1964) Ecology of the Gulf of Mexico commercial sponges and its relation to the fishery. United States Fish and Wildlife Service, Special Scientific Report-Fisheries No. 466

  • Stuart V, Klumpp DW (1984) Evidence for food-resource partitioning by kelp-bed filter feeders. Mar Ecol Prog Ser 16:27–37

    Article  Google Scholar 

  • Thompson JE, Murphy PT, Bergquist PR, Evans EA (1987) Environmentally induced variation in diterpene composition of the marine sponge Rhopaloeides odorabile. Biochem Syst Ecol 15:595–606

    Article  CAS  Google Scholar 

  • Van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez B, Hajdu E, Pisera AB, Vacelet J, Manconi R, Schoenberg C, Janussen D, Tabachnick KR, Klautau M (2008) World Porifera database. Available online at http://www.marinespecies.org/porifera. Consulted on 2009-05-13

  • van Treeck P, Eisinger M, Müller J, Paster M, Schuhmacher H (2003) Mariculture trials with Mediterranean sponge species: the exploitation of an old natural resource with sustainable and novel methods. Aquaculture 218:439–455

    Article  Google Scholar 

  • Verdenal B, Vacelet J (1990) Sponge culture on vertical ropes in the Northwestern Mediterranean Sea. In: Rützler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington DC, pp 416–424

    Google Scholar 

  • Vogel S (1974) Current-induced flow through the sponge, Halichondria. Biol Bull 147:443–456

    Article  CAS  PubMed  Google Scholar 

  • Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9:1363–1375

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson CR, Vacelet J (1979) Transplantation of marine sponges to different conditions of light and current. J Exp Mar Biol Ecol 37:91–104

    Article  Google Scholar 

  • Yahel G, Sharp JH, Marie D, Häse C, Genin A (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major carbon source. Limnol Oceanogr 48:141–149

    Article  Google Scholar 

Download references

Acknowledgments

I would like to thank the many people who have supported my research into farming sponges, from providing guidance to helping out in the field. Specifically, I thank Chris Battershill, Dame Patricia Bergquist, Chris Woods, Pete Notman, Shirley Pomponi, Elizabeth Evans-Illidge, Carsten Wolff, John Morris, and Samson Lowatta. I also thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Duckworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duckworth, A. Farming Sponges to Supply Bioactive Metabolites and Bath Sponges: A Review. Mar Biotechnol 11, 669–679 (2009). https://doi.org/10.1007/s10126-009-9213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-009-9213-2

Keywords

Navigation