Skip to main content
Log in

Marine-Based Cultivation of Diacarnus Sponges and the Bacterial Community Composition of Wild and Maricultured Sponges and Their Larvae

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Marine organisms including sponges (Porifera) contain many structurally diverse bioactive compounds, frequently in a low concentration that hampers their commercial production. Two solutions to this problem are: culturing sponge explants for harvesting the desired compound and cultivation of sponge-associated bacteria. These bacteria (often considered the source of the desired compounds) include the Actinobacteria, from which many novel drugs were developed. In a long-term experiment (lasting 767 days), we evaluated the culture amenability of the sponge Diacarnus erythraenus in a mariculture system, placed at 10- and 20-m depths. The growth and survival rates of sponge fragments were monitored. Wild and maricultured sponges from both depths and their larvae were sampled at different time intervals for denaturing gradient gel electrophoresis (DGGE) profiling of the bacterial community residing within them. 16S rRNA gene sequences of both cultured bacterial isolates and clone libraries of unculturable bacteria were composed and compared, focusing on Actinobacteria. Sponges from both depths did not differ significantly either in mean growth rates (percent weight change year−1 ± S.E.) (64.5% ± 21% at 10 m and 79.3% ± 19.1% at 20 m) or in seasonal growth rates. Survival was also very similar (72% at 10 m and 70% at 20 m). There were 88 isolates identified from adults and 40 from their larvae. The isolates and clone libraries showed diverse bacterial communities. The DGGE profiles of wild and maricultured sponges differed only slightly, without a significant effect of depths or dates of sampling. This long-term experiment suggests that D. erythraenus probably remained healthy and indicates its mariculture suitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Barthel D, Theede H (1986) A new method for the culture of marine sponges and its application for experimental studies. Ophelia 25:75–82

    Google Scholar 

  • Belarbi EH, Gomes AC, Chisti Y, Garcia Camacho FG, Grima EM (2003) Producing drugs from marine sponges. Biotechnol Adv 21:585–598

    Article  CAS  Google Scholar 

  • Berdy J (1989) The discovery of new bioactive microbial metabolites: screening and identification. In: Bushell ME, Graefe U (eds) Bioactive microbial metabolites (Prog Ind Microbiol, vol 27). Elsevier, Amsterdam

  • Bewley CA, Faulkner DJ (1998) Lithistid sponges: star performers or hosts to the stars. Angew Chem Int Ed 37:2162–2178

    Article  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcotec PT, Prinsep MR (2003) Marine natural products. Nat Prod Rep 20:1–48

    Article  PubMed  CAS  Google Scholar 

  • Blunt JW, Copp BR, Hu WP, Munro MGH, Northcote PT, Prinsep MP (2009) Marine natural products. Nat Prod Rep 26:170–244

    Article  PubMed  CAS  Google Scholar 

  • Cassler M, Peterson CL, Ledger A, Pomponi SA, Wright AE, Winegar R, McCarthy PJ, Lopez JV (2008) Use of real-time qPCR to quantify members of the unculturable heterotrophic bacterial community in a deep sea marine sponge, Vetulina sp. Microb Ecol 55:384–394

    Article  PubMed  CAS  Google Scholar 

  • Corriero G, Longo C, Mercurio M, Marzano CN, Lembo G, Spedicato MT (2004) Rearing performance of Spongia officinalis on suspended ropes off the Southern Italian Coast (Central Mediterranean Sea). Aquaculture 238:195–205

    Article  Google Scholar 

  • De Caralt S, Sánchez-Fontenla J, Uriz MJ, Wijffels RH (2010) In situ aquaculture methods for Dysidea avara (Demospongiae, Porifera) in the Northwestern Mediterranean. Mar Drugs 8:1731–1742

    Article  PubMed  Google Scholar 

  • Duckworth A (2009) Farming sponges to supply bioactive metabolites and bath sponges: a review. Mar Biotechnol 11:669–679

    Article  PubMed  CAS  Google Scholar 

  • Duckworth AR, Battershill CN (2003) Developing farming structures for production of biologically active sponge metabolites. Aquaculture 217:139–156

    Article  CAS  Google Scholar 

  • Duckworth AR, Battershill CN, Schiel DR (2004) Effects of depth and water flow on growth, survival and bioactivity of two temperate sponges cultured in different seasons. Aquaculture 242:237–250

    Article  Google Scholar 

  • El Sayed KA, Hamann MT, Hashish NE, Shier WT, Kelly M, Khan AA (2001) Antimalarial, antiviral, and antitoxoplasmosis norsesterterpene peroxide acids from the Red Sea sponge Diacarnus erythraeanus. J Nat Prod 64:522–524

    Article  PubMed  CAS  Google Scholar 

  • Enticknap JJ, Kelly M, Peraud O, Hill RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72:3724–3732

    Article  PubMed  CAS  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19:1–48

    PubMed  CAS  Google Scholar 

  • Ferretti C, Vacca S, Ciucis CD, Marengo B, Duckworth AR, Manconi R, Pronzato R, Domenicotti C (2009) Growth dynamics and bioactivity variation of the Mediterranean demosponges Agelas oroides (Agelasida, Agelasidae) and Petrosia ficiformis (Haplosclerida, Petrosiidae). Mar Ecol 30:327–336

    Article  Google Scholar 

  • Fieseler L, Horn M, Wagner M, Hentschel U (2004) Discovery of the novel candidate phylum “Poribacteria” in marine sponges. Appl Environ Microbiol 70:3724–3732

    Article  PubMed  CAS  Google Scholar 

  • Gaino E, Burlando B, Buffa P, Saraá M (1987) Ultrastructural study of the mature egg of Tethya citrina Sara and Melone (Polifera, Demospongiae). Gamete Res 16:259–265

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni SG, Rappe MS (2000) Evolution, diversity and molecular ecology of marine prokaryotes. In: Kirchman DL (ed) Microbial ecology of the ocean. Wiley, New York

    Google Scholar 

  • Glaser KB, Mayer AMS (2009) A renaissance in marine pharmacology: from preclinical curiosity to clinical reality. Biochem Pharmacol 78:440–448

    Article  PubMed  CAS  Google Scholar 

  • Hadas E, Shpigel M, Ilan M (2005) Sea ranching of the marine sponge Negombata magnifica (Demospongiae, Latrunculiidae) as a first step for latrunculin B mass production. Aquaculture 244:159–169

    Article  CAS  Google Scholar 

  • Hart JB, Lill RE, Hichford SJH, Blunt JW, Munro MHG (2000) The halichondrins: chemistry, biology, supply and delivery. In: Fusetani N (ed) Drugs from the sea. Karger, Basel

    Google Scholar 

  • Hay M (2009) Marine chemical ecology: chemical signals and cues structure marine populations, communities, and ecosystems. Annu Rev Mar Sci 1:193–212

    Article  Google Scholar 

  • Hay M, Fenical W (1996) Chemical ecology and marine biodiversity: insights and products from the sea. Oceanography 9(1):10–20

    Google Scholar 

  • Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, Moore BS (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol 68:4431–4440

    Article  PubMed  CAS  Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. In: Muller WEG (ed) Mar Mol Biotech. Institute of Molecular Biotechnology, Wurzburg University, Germany. Springer, Berlin

  • Hill RT (2004) Microbes from marine sponges: a treasure trove of biodiversity for natural products discovery. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, DC

    Google Scholar 

  • Imhoff JF, Stoehr R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In: Mueller WEG (ed) Sponges (Porifera). Springer, Berlin

    Google Scholar 

  • Janssen PH, Schuhmann A, Mörschel E, Rainey FA (1997) Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil. Appl Environ Microbiol 63:1382–1388

    PubMed  CAS  Google Scholar 

  • Kashman Y, Rotem M (1979) Muqubilin, a new c24-isoprenoid from a marine sponge. Tetrahedron Lett 20(19):1707–1708

    Article  Google Scholar 

  • Kelly-Borges M, Vacelet J (1995) A revision of Diacarnus Burton and Negombata de Laubenfels (Demospongiae: Latranculiidae) with descriptions of new species from the west central Pacific and the Red Sea. Mem Queensl Mus 38(2):447–503

    Google Scholar 

  • Kemp PF, Aller JY (2004) Estimating prokaryotic diversity: when are 16 S rDNA libraries large enough? Limnol Oceanogr Meth 2:114–125

    Article  Google Scholar 

  • Kobayashi J, Ishibashi M (1993) Bioactive metabolites from symbiotic marine microorganisms. Chem Rev 93:1753–1769

    Article  CAS  Google Scholar 

  • Levi C, Levi P (1976) Embryogenese de Chondosia reniformis (NARDO) demosponge ovipare, et transmission des bacteries symbiotiques. Ann Sci Nat 18:367–380

    Google Scholar 

  • Li ZY, Liu Y (2006) Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis. Lett Appl Microbiol 43:410–416

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonho VB, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    PubMed  CAS  Google Scholar 

  • Mohamed NM, Enticknap JJ, Lohr JE, McIntosh SM, Hill RT (2008a) Changes in bacterial communities of the marine sponge Mycale laxissima on transfer into aquaculture. Appl Environ Microbiol 74:1209–1222

    Article  PubMed  CAS  Google Scholar 

  • Mohamed NM, Rao V, Hamann MT, Kelly M, Hill RT (2008b) Monitoring bacterial diversity of the marine sponge Ircinia strobilina upon transfer into aquaculture. Appl Environ Microbiol 74:4133–4143

    Article  PubMed  CAS  Google Scholar 

  • Munro MHG, Blunt JW, Dumdei EJ, Hickford SJH, Lill RE, Li S, Battershill CN, Duckworth AR (1999) The discovery and development of marine compounds with pharmaceutical potential. J Biotechnol 70:15–25

    Article  PubMed  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  • Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238

    Article  PubMed  CAS  Google Scholar 

  • Okami Y, Hotta K (1988) Search and discovery of new antibiotics. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, San Diego

    Google Scholar 

  • Oren M, Steindler L, Ilan M (2005) Transmission, plasticity and the molecular identification of cyanobacterial symbionts in the Red Sea sponge Diacarnus erythraenus. Mar Biol 148:35–41

    Article  CAS  Google Scholar 

  • Osinga R (2003) Biotechnological aspects of marine sponges. J Biotechnol 100:91–92

    Article  PubMed  CAS  Google Scholar 

  • Osinga R, Tramper J, Wijffels RH (1999) Cultivation of marine sponges. Mar Biotechnol 1:509–532

    Article  PubMed  CAS  Google Scholar 

  • Piel J (2009) Metabolites from symbiotic bacteria. Nat Prod Rep 26:338–362

    Article  PubMed  CAS  Google Scholar 

  • Piel J, Hofer I, Hui D (2004a) Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J Bacteriol 186:1280–1286

    Article  PubMed  CAS  Google Scholar 

  • Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, Matsunaga S (2004b) Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci USA 101:16222–16227

    Article  PubMed  CAS  Google Scholar 

  • Proksch P, Ebel R, Edrada RA, Schupp P, Lin WH, Sudarsono WV, Steube K (2003) Detection of pharmacologically active natural products using ecology. Selected examples from Indopacific marine invertebrates and sponge-derived fungi. Pure Appl Chem 75:343–352

    Article  CAS  Google Scholar 

  • Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, Candidatus Entotheonella palauensis. Mar Biol 136:969–977

    Article  CAS  Google Scholar 

  • Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–7708

    Article  PubMed  CAS  Google Scholar 

  • Sciscioli M, Lepore E, Gherardi M, Scalera LL (1994) Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demospongiae): an ultrastructural study. Cahier de Biol Mar 35:471–478

    Google Scholar 

  • Sharp KH, Eam BE, Faulkner DJ, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microbiol 73:622–629

    Article  PubMed  CAS  Google Scholar 

  • Sipkema D, Osinga R, Schatton W, Mendola D, Tramper J, Wijffels RH (2005) Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis? Biotechnol Bioeng 90:201–222

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Schupp PJ, Baillie HJ, Charlton TS, de Nys R, Kjelleberg S, Steinberg PD (2004) Evidence for acylhomoserinelactone signal production in bacteria associated with marine sponges. Appl Environ Microbiol 70:4387–4389

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Schupp PJ, de Nys R, Kjelleberg S, Steinberg PD (2005) Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ Microbiol 7:419–433

    Article  PubMed  CAS  Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  CAS  Google Scholar 

  • Thoms C, Ebel R, Proksch P (2006) Activated chemical defense in Aplysina sponges revisited. J Chem Ecol 32:97–123

    Article  PubMed  CAS  Google Scholar 

  • Turon X, Marti R, Uriz MJ (2009) Chemical bioactivity of sponges along an environmental gradient in a Mediterranean cave. Sci Mar 73:387–397

    Article  CAS  Google Scholar 

  • Wang G (2006) Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–551

    Article  PubMed  CAS  Google Scholar 

  • Webster NS (2007) Sponge disease: a global threat? Environ Microbiol 9:1363–1375

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Watts JEM, Hill RT (2001a) Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S ribosomal RNA gene sequences from a Great Barrier Reef sponge. Mar Biotechnol 3:600–608

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Wilson KJ, Blackall LL, Hill RT (2001b) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–444

    Article  PubMed  CAS  Google Scholar 

  • Webster NS, Negri AP, Webbb RI, Hill RT (2002) A spongin-boring α-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–309

    Article  Google Scholar 

  • Webster NS, Negri AP, Munro M, Battershill CN (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300

    Article  PubMed  Google Scholar 

  • Youssef DTA (2004) Tasnemoxides A–C, new cytotoxic cyclic norsesterterpene peroxides from the red sea sponge Diacarnus erythraenus. J Nat Prod 67:112–114

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Zhang W, Jin Y, Jin M, Yu X (2008) A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species. Antonie Leeuwenhoek 93:241–248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the US–Israel BARD foundation (UMBI/I: MB-8708-04). We thank the many divers who assisted during the field work. The assistance of the personnel at the Interuniversity Institute for Marine Sciences in Eilat is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micha Ilan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergman, O., Haber, M., Mayzel, B. et al. Marine-Based Cultivation of Diacarnus Sponges and the Bacterial Community Composition of Wild and Maricultured Sponges and Their Larvae. Mar Biotechnol 13, 1169–1182 (2011). https://doi.org/10.1007/s10126-011-9391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-011-9391-6

Keywords

Navigation