Skip to main content

Advertisement

Log in

A peritoneal-based automated wearable artificial kidney

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Work on wearable kidneys has evolved around the technology of hemodialysis or hemofiltration, which call for continuous anticoagulation of the extracoporeal circulation and are encumbered with potential immunologic and non-immunologic complications of continuous blood–artificial membrane interactions. A peritoneal-based automated wearable artificial kidney (AWAK) requires no extracorporeal circulation and is therefore “bloodless.” Because AWAK is designed to continuously regenerate and reuse the spent dialysate in perpetuity, it is also “waterless.” A sorbent-based assembly regenerates both the aqueous and the protein components (AqC and PrC) of the spent dialysate, producing a novel, autologous protein-containing dialysate. The regenerated AqC has the same composition as the commercially available peritoneal dialysate, but contains bicarbonate instead of lactate and has a more physiological pH. The regenerated PrC is recycled back into the peritoneal cavity, thereby ameliorating or eliminating protein loss. Depending on the steady-state protein concentrations that can be achieved (under the condition of continuous dialysate regeneration and recycling), the PrC also has the potential of both augmenting ultrafiltration and mediating the removal of protein-bound toxins. Additional sorbents can be incorporated into AWAK for the removal of middle molecular weight uremic toxins. At a regeneration rate of 4 l/h, AWAK provides a dialysate flow of 96 l/day (8–12 times the current rate). Round-the-clock dialysis and ultrafiltration provide steady-state metabolic-biochemical and fluid balance regulation, thereby eliminating “shocks” of abrupt changes in these parameters that characterize the current dialytic modalities. Dialysis-on-the-go, made possible by AWAK’s “wearability” and automation, frees end-stage renal failure patients from the servitude that is demanded by the current dialytic regimentations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 2003;63(5):1934–43.

    Article  PubMed  CAS  Google Scholar 

  2. Gura V, Beizai M, Ezon C, Polaschegg HD. Continuous renal replacement therapy for end-stage renal disease. The wearable artificial kidney (WAK). Contrib Nephrol. 2005;149:325–33.

    PubMed  Google Scholar 

  3. Nissenson AR, Ronco C, Pergamit G, Edelstein M, Watts R. The human nephron filter: toward a continuously functioning, implantable artificial nephron system. Blood Purif. 2005;23(4):269–74.

    Article  PubMed  Google Scholar 

  4. Saito A, Aung T, Sekiguchi K, et al. Present status and perspectives of bioartificial kidneys. J Artif Organs. 2006;9(3):130–5.

    Article  PubMed  Google Scholar 

  5. Lande AJ, Roberts M, Pecker EA. In search of a 24 hrs/day, 7 days/week wearable hemodialyzer. Trans Am Soc Artif Intern Organs. 1977;23:185–90.

    PubMed  CAS  Google Scholar 

  6. Yamamoto K, Hiwatari M, Kohori F, Sakai K, Fukuda M, Hiyoshi T. Membrane fouling and dialysate flow pattern in an internal filtration-enhancing dialyzer. J Artif Organs. 2005;8(3):198–205.

    Article  PubMed  CAS  Google Scholar 

  7. Murisasco A, Reynier JP, Ragon A, et al. Continuous arterio-venous hemofiltration in a wearable device to treat end-stage renal disease. ASAIO Trans. 1986;32(1):567–71.

    Article  PubMed  CAS  Google Scholar 

  8. Neff MS, Sadjadi S, Slifkin R. A wearable artificial glorerulus. ASAIO Trans. 1979;25:71–3.

    CAS  Google Scholar 

  9. Lee DBN, Roberts M. A peritoneal-based wearable dialysis system. Continuous dialysis using a protein-containing dialysate In: Agarwal S, ed. Scientific Proceedings, South-Asian Nephrology Congress at New Millennium and International CME-2000. New Delhi, 2000:94–9.

  10. Roberts M, Lee DBN. A proposed peritoneal-based wearable artificial kidney. Home Hemodialysis Int. 1999;3:65–7.

    Google Scholar 

  11. Roberts M, Lee DBN. Wearable artificial kidneys. A peritoneal-dialysis approach. Dialysis and Transplantation. 2006;36:780–2.

    Article  Google Scholar 

  12. Roberts M, Niu PC, Lee DBN. Regeneration of peritoneal dialysate (PD): a step towards a continuous wearable artificial kidney (CWAK). J Am Soc Nephrol. 1991;2(3):367.

    Google Scholar 

  13. Vychytil A, Horl WH. The role of tidal peritoneal dialysis in modern practice: A European perspective. Kidney Int Suppl. 2006(103):S96–103.

    Article  Google Scholar 

  14. Fernando SK, Finkelstein FO. Tidal PD: its role in the current practice of peritoneal dialysis. Kidney Int Suppl 2006(103):S91–5.

    Article  PubMed  Google Scholar 

  15. Roberts M, Ash SR, Lee DB. Innovative peritoneal dialysis: flow-thru and dialysate regeneration. ASAIO J. 1999;45(5):372–8.

    Article  PubMed  CAS  Google Scholar 

  16. Villarroel F. Kinetics of intermittent and continuous peritoneal dialysis. J Dial. 1977;1(4):333–47.

    PubMed  CAS  Google Scholar 

  17. Lange K, Treser G, Mangalat J. Automatic continuous high flow rate peritoneal dialysis. Arch Klin Med. 1968;214(3):201–6.

    PubMed  CAS  Google Scholar 

  18. Lee DB, Brown DL, Baker LR, Littlejohns DW, Roberts PD. Haematological complications of chlorate poisoning. Br Med J. 1970;2(5700):31–2.

    PubMed  CAS  Google Scholar 

  19. Blumenkrantz MJ, Gordon A, Roberts M, Lewin AJ, Pecker EA, Moran JK, Coburn JW, Maxwell MH. Applications of the Redy sorbent system to hemodialysis and peritoneal dialysis. Artif Organs. 1979;3(3):230–6.

    Article  PubMed  CAS  Google Scholar 

  20. Hansen S. Sorbent dialysis in the third millennium. Nephrol News Issues 2006;20(1):43–5.

    PubMed  Google Scholar 

  21. Capparelli AW, Roberts M, Lee DBN. Towards a wearable artificial kidney for continuous dialysis: ex-vivo sorbent regeneration of filtered peritoneal dialysate during intermittent peritoneal dialysis. J Am Soc Nephr. 1993;4:399A.

    Google Scholar 

  22. Hoff CM. In vitro biocompatibility performance of Physioneal. Kidney Int Suppl. 2003(88):S57–74.

    Article  Google Scholar 

  23. Etteldorf JN, Dobbins WT, Summitt RL, Rainwater WT, Fischer RL. Intermittent peritoneal dialysis using 5 per cent albumin in the treatment of salicylate intoxication in children. J Pediatr. 1961;58:226–36.

    Article  PubMed  CAS  Google Scholar 

  24. Roberts M, Dinovo EC, Yanagawa N, Lee DBN. Can peritoneal proteins be regenerated and reused for binding toxins? J Am Soc Nephrol. 1999;10:228A.

    Google Scholar 

  25. Roberts M, Paul W, Yanagawa N, Corry DB, Lee DBN. Peritoneal dialysis of protein-bound toxins: feasibility of regeneration of spent dialysis proteins. Perit Dial Int. 1999;19(Suppl 1):S22.

    Google Scholar 

  26. Roberts M, Capparelli AW, Wong C, Lee DBN. Development of a wearable artificial kidney based upon sorbent regeneration of peritoneal dialysate. Perit Dial Int. 1995;15(Suppl 4):S88.

    Google Scholar 

  27. Petersen NJ, Carson LA, Favero MS, Marshall JH Jr, Aguero SM. Removal of bacteria and bacterial endotoxin from dialysis fluids by the media in a sorbent cartridge. Trans Am Soc Artif Intern Organs. 1979;25:402–3.

    PubMed  CAS  Google Scholar 

  28. Levy E. Method of reducing contaminants in drinking water In: USPaT Office, ed. United States Patent Application Publication. USA, 2003.

  29. Karl DW, Magnusson JC, Carr PW, Flickinger MC. Preliminary assessment of removal of pyrogenic lipopolysaccharides with colloidal zirconia adsorbents. Enzyme Microb Technol. 1991;13(9):708–15.

    Article  PubMed  CAS  Google Scholar 

  30. Sonderstrup J. On bacteriological problems in the REDY dialysis system. Scand J Urol Nephrol 1976(30 Suppl):19–22.

  31. Murisasco A, Baz M, Boobes Y, Bertocchio P, el Mehdi M, Durand C, Reynier JP, Ragon A. A continuous hemofiltration system using sorbents for hemofiltrate regeneration. Clin Nephrol. 1986;26(Suppl 1):S53–7.

    PubMed  Google Scholar 

  32. Shapiro WB, Schilb TP, Porush JG. Sorbent recycling of ultrafiltrate in man–a 45-week crossover study. Clin Nephrol. 1986;26(Suppl 1):S47–52.

    PubMed  Google Scholar 

  33. Twardowski ZJ. Short, thrice-weekly hemodialysis is inadequate regardless of small molecule clearance. Int J Artif Organs. 2004;27(6):452–66.

    PubMed  CAS  Google Scholar 

  34. Frampton JE, Plosker GL. Icodextrin: a review of its use in peritoneal dialysis. Drugs. 2003;63(19):2079–105.

    Article  PubMed  CAS  Google Scholar 

  35. Garcia-Lopez E, Lindholm B, Tranaeus A. Biocompatibility of new peritoneal dialysis solutions: clinical experience. Perit Dial Int. 2000;20(Suppl 5):S48–56.

    PubMed  Google Scholar 

  36. Rozenberg R, Magen E, Weissgarten J, Korzets Z. Icodextrin-induced sterile peritonitis: the Israeli experience. Perit Dial Int. 2006;26(3):402–5.

    PubMed  CAS  Google Scholar 

  37. Lai KN, Ho SK, Leung J, Tang SC, Chan TM, Li FK. Increased survival of mesothelial cells from the peritoneum in peritoneal dialysis fluid. Cell Biol Int. 2001;25(5):445–50.

    Article  PubMed  CAS  Google Scholar 

  38. Etteldorf JN, Montalvo JM, Kaplan S, Sheffield JA. Intermittent peritoneal dialysis in the treatment of experimental salicylate intoxication. J Pediatr. 1960;56:1–10.

    Article  PubMed  CAS  Google Scholar 

  39. Chiu A, Fan ST. MARS in the treatment of liver failure: controversies and evidence. Int J Artif Organs. 2006;29(7):660–7.

    PubMed  CAS  Google Scholar 

  40. Bammens B, Evenepoel P, Verbeke K, Vanrenterghem Y. Removal of middle molecules and protein-bound solutes by peritoneal dialysis and relation with uremic symptoms. Kidney Int. 2003;64(6):2238–43.

    Article  PubMed  CAS  Google Scholar 

  41. Faybik P, Hetz H, Baker A, Bittermann C, Berlakovich G, Werba A, Krenn CG, Steltzer H. Extracorporeal albumin dialysis in patients with Amanita phalloides poisoning. Liver Int. 2003;23(Suppl 3):28–33.

    PubMed  CAS  Google Scholar 

  42. Yokoyama K, Ogura Y, Kishimoto M, et al. Blood purification for severe sarin poisoning after the Tokyo subway attack. Jama. 1995;274(5):379.

    Article  PubMed  CAS  Google Scholar 

  43. Ash SR, Sullivan TA, Carr DJ. Sorbent suspensions vs. sorbent columns for extracorporeal detoxification in hepatic failure. Ther Apher Dial. 2006;10(2):145–53.

    Article  PubMed  CAS  Google Scholar 

  44. Winchester JF, Amerling R, Harbord N, Capponi V, Ronco C. The potential application of sorbents in peritoneal dialysis. Contrib Nephrol. 2006;150:336–43.

    Article  PubMed  Google Scholar 

  45. Tauer A, Zhang X, Schaub TP, Zimmeck T, Niwa T, Passlick-Deetjen J, Pischetsrieder M. Formation of advanced glycation end products during CAPD. Am J Kidney Dis. 2003;41(3 Suppl 1):S57–60.

    Article  PubMed  CAS  Google Scholar 

  46. Reddingius RE, de Boer AW, Schroder CH, Willems JL, Monnens LA. Increase of the bioavailability of intraperitoneal erythropoietin in children on peritoneal dialysis by administration in small dialysis bags. Perit Dial Int. 1997;17(5):467–70.

    PubMed  CAS  Google Scholar 

  47. Schroder CH, Swinkels LM, Reddingius RE, Sweep FG, Willems HL, Monnens LA. Adsorption of erythropoietin and growth hormone to peritoneal dialysis bags and tubing. Perit Dial Int. 2001;21(1):90–2.

    PubMed  CAS  Google Scholar 

  48. Schroder CH. The management of anemia in pediatric peritoneal dialysis patients. Guidelines by an ad hoc European committee. Pediatr Nephrol. 2003;18(8):805–9.

    Article  PubMed  Google Scholar 

  49. Ghosh S, Sharma A, Talukder G. Zirconium. An abnormal trace element in biology. Biol Trace Elem Res. 1992;35(3):247–71.

    Article  PubMed  CAS  Google Scholar 

  50. Schroeder HA, Balassa JJ. Abnormal trace metals in man: zirconium. J Chronic Dis. 1966;19(5):573–86.

    Article  PubMed  CAS  Google Scholar 

  51. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials. 1999;20(1):1–25.

    Article  PubMed  CAS  Google Scholar 

  52. Sollazzo V, Palmieri A, Pezzetti F, Bignozzi CA, Argazzi R, Massari L, Brunelli G, Carinci F. Genetic effect of zirconium oxide coating on osteoblast-like cells. J Biomed Mater Res B Appl Biomater 2007.

  53. Laden K. Introduction ahd history of antiperspirants and deodorants. In: Laden K, Felger CB, eds. Antiperspirants and deodorants. New York: Marcel Decker, 1988:1–13.

  54. Chang PP, Henegbarth EA, Lang LA. Maxillary zirconia implant fixed partial dentures opposing an acrylic resin implant fixed complete denture: a two-year clinical report. J Prosthet Dent. 2007;97(6):321–30.

    Article  PubMed  CAS  Google Scholar 

  55. Tsukamoto R, Chen S, Asano T, Ogino M, Shoji H, Nakamura T, Clarke IC. Improved wear performance with crosslinked UHMWPE and zirconia implants in knee simulation. Acta Orthop. 2006;77(3):505–11.

    Article  PubMed  Google Scholar 

  56. Lappalainen R, Santavirta SS. Potential of coatings in total hip replacement. Clin Orthop Relat Res. 2005(430):72–9.

    Article  Google Scholar 

  57. Schadel A, Thun G, Stork L, Metzler R. Immunodiffusion and immunohistochemical investigations on the reactivity of oxide ceramic middle-ear implants. ORL J Otorhinolaryngol Relat Spec. 1993;55(4):216–21.

    PubMed  CAS  Google Scholar 

  58. Odell RA. Sorbent dialysis. In: Nissenson AR, Fine RN, Gentile DE, eds. Clinical dialysis, 2nd edition. Connecticut: Appleton and Lange, 1990:712–9.

  59. U.S. Renal Data System, USRDS 2006 Annual Data Report: Atlas of End-Stage Renal Disease in the United States. Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. N. Lee.

About this article

Cite this article

Lee, D.B.N., Roberts, M. A peritoneal-based automated wearable artificial kidney. Clin Exp Nephrol 12, 171–180 (2008). https://doi.org/10.1007/s10157-008-0050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-008-0050-9

Keywords

Navigation