Skip to main content
Erschienen in: Foundations of Computational Mathematics 6/2012

01.12.2012

The Convex Geometry of Linear Inverse Problems

verfasst von: Venkat Chandrasekaran, Benjamin Recht, Pablo A. Parrilo, Alan S. Willsky

Erschienen in: Foundations of Computational Mathematics | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In applications throughout science and engineering one is often faced with the challenge of solving an ill-posed inverse problem, where the number of available measurements is smaller than the dimension of the model to be estimated. However in many practical situations of interest, models are constrained structurally so that they only have a few degrees of freedom relative to their ambient dimension. This paper provides a general framework to convert notions of simplicity into convex penalty functions, resulting in convex optimization solutions to linear, underdetermined inverse problems. The class of simple models considered includes those formed as the sum of a few atoms from some (possibly infinite) elementary atomic set; examples include well-studied cases from many technical fields such as sparse vectors (signal processing, statistics) and low-rank matrices (control, statistics), as well as several others including sums of a few permutation matrices (ranked elections, multiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal matrices (machine learning), and atomic measures (system identification). The convex programming formulation is based on minimizing the norm induced by the convex hull of the atomic set; this norm is referred to as the atomic norm. The facial structure of the atomic norm ball carries a number of favorable properties that are useful for recovering simple models, and an analysis of the underlying convex geometry provides sharp estimates of the number of generic measurements required for exact and robust recovery of models from partial information. These estimates are based on computing the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set has algebraic structure the resulting optimization problems can be solved or approximated via semidefinite programming. The quality of these approximations affects the number of measurements required for recovery, and this tradeoff is characterized via some examples. Thus this work extends the catalog of simple models (beyond sparse vectors and low-rank matrices) that can be recovered from limited linear information via tractable convex programming.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
spherical cap is a subset of the sphere obtained by intersecting the sphere \(\mathbb{S}^{p-1}\) with a halfspace.
 
2
While Proposition 3.15 follows as a consequence of the general result in Corollary 3.14, one can remove the constant factor 9 in the statement of Proposition 3.15 by carrying out a more refined analysis of the Birkhoff polytope.
 
Literatur
1.
Zurück zum Zitat S. Aja-Fernandez, R. Garcia, D. Tao, X. Li, Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition (Springer, Berlin, 2009). MATHCrossRef S. Aja-Fernandez, R. Garcia, D. Tao, X. Li, Tensors in Image Processing and Computer Vision. Advances in Pattern Recognition (Springer, Berlin, 2009). MATHCrossRef
2.
3.
Zurück zum Zitat A. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory 39, 930–945 (1993). MathSciNetMATHCrossRef A. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Trans. Inf. Theory 39, 930–945 (1993). MathSciNetMATHCrossRef
4.
Zurück zum Zitat A. Barvinok, A Course in Convexity (American Mathematical Society, Providence, 2002). MATH A. Barvinok, A Course in Convexity (American Mathematical Society, Providence, 2002). MATH
5.
Zurück zum Zitat C. Beckmann, S. Smith, Tensorial extensions of independent component analysis for multisubject FMRI analysis, NeuroImage 25, 294–311 (2005). CrossRef C. Beckmann, S. Smith, Tensorial extensions of independent component analysis for multisubject FMRI analysis, NeuroImage 25, 294–311 (2005). CrossRef
6.
Zurück zum Zitat D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Athena Scientific, Nashua, 2007). D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Athena Scientific, Nashua, 2007).
7.
Zurück zum Zitat D. Bertsekas, A. Nedic, A. Ozdaglar, Convex Analysis and Optimization (Athena Scientific, Nashua, 2003). MATH D. Bertsekas, A. Nedic, A. Ozdaglar, Convex Analysis and Optimization (Athena Scientific, Nashua, 2003). MATH
8.
9.
Zurück zum Zitat J. Bochnak, M. Coste, M. Roy, Real Algebraic Geometry (Springer, Berlin, 1988). J. Bochnak, M. Coste, M. Roy, Real Algebraic Geometry (Springer, Berlin, 1988).
10.
11.
Zurück zum Zitat A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz, M. Simonovits, Approximation of diameters: randomization doesn’t help, in Proceedings of the 39th Annual Symposium on Foundations of Computer Science (1998), pp. 244–251. A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz, M. Simonovits, Approximation of diameters: randomization doesn’t help, in Proceedings of the 39th Annual Symposium on Foundations of Computer Science (1998), pp. 244–251.
12.
Zurück zum Zitat J. Cai, E. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim. 20, 1956–1982 (2008). CrossRef J. Cai, E. Candès, Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM J. Optim. 20, 1956–1982 (2008). CrossRef
13.
14.
Zurück zum Zitat E. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM 58, 1–37 (2011). CrossRef E. Candès, X. Li, Y. Ma, J. Wright, Robust principal component analysis? J. ACM 58, 1–37 (2011). CrossRef
15.
Zurück zum Zitat E. Candès, Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements, IEEE Trans. Inf. Theory 57, 2342–2359 (2011). CrossRef E. Candès, Y. Plan, Tight oracle inequalities for low-rank matrix recovery from a minimal number of noisy random measurements, IEEE Trans. Inf. Theory 57, 2342–2359 (2011). CrossRef
16.
Zurück zum Zitat E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 52, 489–509 (2006). MATHCrossRef E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 52, 489–509 (2006). MATHCrossRef
17.
18.
Zurück zum Zitat E. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory 51, 4203–4215 (2005). CrossRef E. Candès, T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory 51, 4203–4215 (2005). CrossRef
19.
Zurück zum Zitat V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, A.S. Willsky, Rank-sparsity incoherence for matrix decomposition, SIAM J. Optim. 21, 572–596 (2011). MathSciNetMATHCrossRef V. Chandrasekaran, S. Sanghavi, P.A. Parrilo, A.S. Willsky, Rank-sparsity incoherence for matrix decomposition, SIAM J. Optim. 21, 572–596 (2011). MathSciNetMATHCrossRef
20.
Zurück zum Zitat P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4, 1168–1200 (2005). MathSciNetMATHCrossRef P. Combettes, V. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul. 4, 1168–1200 (2005). MathSciNetMATHCrossRef
21.
Zurück zum Zitat I. Daubechies, M. Defriese, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math. LVII, 1413–1457 (2004). CrossRef I. Daubechies, M. Defriese, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Commun. Pure Appl. Math. LVII, 1413–1457 (2004). CrossRef
22.
Zurück zum Zitat K.R. Davidson, S.J. Szarek, Local operator theory, random matrices and Banach spaces, in Handbook of the Geometry of Banach Spaces, vol. I (2001), pp. 317–366. CrossRef K.R. Davidson, S.J. Szarek, Local operator theory, random matrices and Banach spaces, in Handbook of the Geometry of Banach Spaces, vol. I (2001), pp. 317–366. CrossRef
23.
Zurück zum Zitat V. de Silva, L. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008). MathSciNetCrossRef V. de Silva, L. Lim, Tensor rank and the ill-posedness of the best low-rank approximation problem, SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008). MathSciNetCrossRef
25.
Zurück zum Zitat M. Deza, M. Laurent, Geometry of Cuts and Metrics (Springer, Berlin, 1997). MATH M. Deza, M. Laurent, Geometry of Cuts and Metrics (Springer, Berlin, 1997). MATH
26.
Zurück zum Zitat D.L. Donoho, High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom. (online) (2005). D.L. Donoho, High-dimensional centrally-symmetric polytopes with neighborliness proportional to dimension, Discrete Comput. Geom. (online) (2005).
27.
Zurück zum Zitat D.L. Donoho, For most large underdetermined systems of linear equations the minimal ℓ 1-norm solution is also the sparsest solution, Commun. Pure Appl. Math. 59, 797–829 (2006). MathSciNetMATHCrossRef D.L. Donoho, For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution, Commun. Pure Appl. Math. 59, 797–829 (2006). MathSciNetMATHCrossRef
29.
Zurück zum Zitat D. Donoho, J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming, Proc. Natl. Acad. Sci. USA 102, 9446–9451 (2005). MathSciNetCrossRef D. Donoho, J. Tanner, Sparse nonnegative solution of underdetermined linear equations by linear programming, Proc. Natl. Acad. Sci. USA 102, 9446–9451 (2005). MathSciNetCrossRef
30.
Zurück zum Zitat D. Donoho, J. Tanner, Counting faces of randomly-projected polytopes when the projection radically lowers dimension, J. Am. Math. Soc. 22, 1–53 (2009). MathSciNetMATHCrossRef D. Donoho, J. Tanner, Counting faces of randomly-projected polytopes when the projection radically lowers dimension, J. Am. Math. Soc. 22, 1–53 (2009). MathSciNetMATHCrossRef
31.
Zurück zum Zitat D. Donoho, J. Tanner, Counting the faces of randomly-projected hypercubes and orthants with applications, Discrete Comput. Geom. 43, 522–541 (2010). MathSciNetMATHCrossRef D. Donoho, J. Tanner, Counting the faces of randomly-projected hypercubes and orthants with applications, Discrete Comput. Geom. 43, 522–541 (2010). MathSciNetMATHCrossRef
32.
Zurück zum Zitat R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1, 290–330 (1967). MathSciNetMATHCrossRef R.M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Funct. Anal. 1, 290–330 (1967). MathSciNetMATHCrossRef
33.
Zurück zum Zitat M. Dyer, A. Frieze, R. Kannan, A random polynomial-time algorithm for approximating the volume of convex bodies, J. ACM 38, 1–17 (1991). MathSciNetMATHCrossRef M. Dyer, A. Frieze, R. Kannan, A random polynomial-time algorithm for approximating the volume of convex bodies, J. ACM 38, 1–17 (1991). MathSciNetMATHCrossRef
34.
Zurück zum Zitat M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Department of Electrical Engineering, Stanford University (2002). M. Fazel, Matrix rank minimization with applications, Ph.D. thesis, Department of Electrical Engineering, Stanford University (2002).
35.
Zurück zum Zitat M. Figueiredo, R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process. 12, 906–916 (2003). MathSciNetCrossRef M. Figueiredo, R. Nowak, An EM algorithm for wavelet-based image restoration, IEEE Trans. Image Process. 12, 906–916 (2003). MathSciNetCrossRef
36.
Zurück zum Zitat M. Fukushima, H. Mine, A generalized proximal point algorithm for certain non-convex minimization problems, Int. J. Inf. Syst. Sci. 12, 989–1000 (1981). MathSciNetMATHCrossRef M. Fukushima, H. Mine, A generalized proximal point algorithm for certain non-convex minimization problems, Int. J. Inf. Syst. Sci. 12, 989–1000 (1981). MathSciNetMATHCrossRef
37.
Zurück zum Zitat M. Goemans, D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM 42, 1115–1145 (1995). MathSciNetMATHCrossRef M. Goemans, D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J. ACM 42, 1115–1145 (1995). MathSciNetMATHCrossRef
38.
Zurück zum Zitat Y. Gordon, On Milman’s inequality and random subspaces which escape through a mesh in ℝ n , in Geometric Aspects of Functional Analysis, Israel Seminar 1986–1987. Lecture Notes in Mathematics, vol. 1317 (1988), pp. 84–106. CrossRef Y. Gordon, On Milman’s inequality and random subspaces which escape through a mesh in ℝ n , in Geometric Aspects of Functional Analysis, Israel Seminar 1986–1987. Lecture Notes in Mathematics, vol. 1317 (1988), pp. 84–106. CrossRef
40.
Zurück zum Zitat T. Hale, W. Yin, Y. Zhang, A fixed-point continuation method for ℓ 1-regularized minimization: methodology and convergence, SIAM J. Optim. 19, 1107–1130 (2008). MathSciNetMATHCrossRef T. Hale, W. Yin, Y. Zhang, A fixed-point continuation method for 1-regularized minimization: methodology and convergence, SIAM J. Optim. 19, 1107–1130 (2008). MathSciNetMATHCrossRef
41.
Zurück zum Zitat J. Harris, Algebraic Geometry: A First Course (Springer, Berlin). J. Harris, Algebraic Geometry: A First Course (Springer, Berlin).
42.
Zurück zum Zitat J. Haupt, W.U. Bajwa, G. Raz, R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation, IEEE Trans. Inform. Theory 56(11), 5862–5875 (2010). MathSciNetCrossRef J. Haupt, W.U. Bajwa, G. Raz, R. Nowak, Toeplitz compressed sensing matrices with applications to sparse channel estimation, IEEE Trans. Inform. Theory 56(11), 5862–5875 (2010). MathSciNetCrossRef
43.
Zurück zum Zitat S. Jagabathula, D. Shah, Inferring rankings using constrained sensing, IEEE Trans. Inf. Theory 57, 7288–7306 (2011). MathSciNetCrossRef S. Jagabathula, D. Shah, Inferring rankings using constrained sensing, IEEE Trans. Inf. Theory 57, 7288–7306 (2011). MathSciNetCrossRef
44.
Zurück zum Zitat L. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Ann. Stat. 20, 608–613 (1992). MATHCrossRef L. Jones, A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training, Ann. Stat. 20, 608–613 (1992). MATHCrossRef
45.
Zurück zum Zitat D. Klain, G. Rota, Introduction to Geometric Probability (Cambridge University Press, Cambridge, 1997). MATH D. Klain, G. Rota, Introduction to Geometric Probability (Cambridge University Press, Cambridge, 1997). MATH
48.
Zurück zum Zitat M. Ledoux, The Concentration of Measure Phenomenon (American Mathematical Society, Providence, 2000). M. Ledoux, The Concentration of Measure Phenomenon (American Mathematical Society, Providence, 2000).
49.
Zurück zum Zitat M. Ledoux, M. Talagrand, Probability in Banach Spaces (Springer, Berlin, 1991). MATH M. Ledoux, M. Talagrand, Probability in Banach Spaces (Springer, Berlin, 1991). MATH
51.
Zurück zum Zitat S. Ma, D. Goldfarb, L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Math. Program. 128, 321–353 (2011). MathSciNetMATHCrossRef S. Ma, D. Goldfarb, L. Chen, Fixed point and Bregman iterative methods for matrix rank minimization, Math. Program. 128, 321–353 (2011). MathSciNetMATHCrossRef
52.
Zurück zum Zitat O. Mangasarian, B. Recht, Probability of unique integer solution to a system of linear equations, Eur. J. Oper. Res. 214, 27–30 (2011). MathSciNetMATHCrossRef O. Mangasarian, B. Recht, Probability of unique integer solution to a system of linear equations, Eur. J. Oper. Res. 214, 27–30 (2011). MathSciNetMATHCrossRef
54.
Zurück zum Zitat S. Negahban, P. Ravikumar, M. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Preprint (2010). S. Negahban, P. Ravikumar, M. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Preprint (2010).
55.
Zurück zum Zitat Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report (1997). Y. Nesterov, Quality of semidefinite relaxation for nonconvex quadratic optimization. Technical report (1997).
56.
Zurück zum Zitat Y. Nesterov, Introductory Lectures on Convex Optimization (Kluwer Academic, Amsterdam, 2004). MATH Y. Nesterov, Introductory Lectures on Convex Optimization (Kluwer Academic, Amsterdam, 2004). MATH
57.
Zurück zum Zitat Y. Nesterov, Gradient methods for minimizing composite functions, CORE discussion paper 76 (2007). Y. Nesterov, Gradient methods for minimizing composite functions, CORE discussion paper 76 (2007).
58.
59.
Zurück zum Zitat G. Pisier, Remarques sur un résultat non publié de B. Maurey. Séminaire d’analyse fonctionnelle (Ecole Polytechnique Centre de Mathematiques, Palaiseau, 1981). G. Pisier, Remarques sur un résultat non publié de B. Maurey. Séminaire d’analyse fonctionnelle (Ecole Polytechnique Centre de Mathematiques, Palaiseau, 1981).
60.
Zurück zum Zitat G. Pisier, Probabilistic methods in the geometry of Banach spaces, in Probability and Analysis, pp. 167–241 (1986). CrossRef G. Pisier, Probabilistic methods in the geometry of Banach spaces, in Probability and Analysis, pp. 167–241 (1986). CrossRef
61.
Zurück zum Zitat E. Polak, Optimization: Algorithms and Consistent Approximations (Springer, Berlin, 1997). MATH E. Polak, Optimization: Algorithms and Consistent Approximations (Springer, Berlin, 1997). MATH
62.
Zurück zum Zitat H. Rauhut, Circulant and Toeplitz matrices in compressed sensing, in Proceedings of SPARS’09, (2009). H. Rauhut, Circulant and Toeplitz matrices in compressed sensing, in Proceedings of SPARS’09, (2009).
63.
Zurück zum Zitat B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization, SIAM Rev. 52, 471–501 (2010). MathSciNetMATHCrossRef B. Recht, M. Fazel, P.A. Parrilo, Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization, SIAM Rev. 52, 471–501 (2010). MathSciNetMATHCrossRef
64.
Zurück zum Zitat B. Recht, W. Xu, B. Hassibi, Null space conditions and thresholds for rank minimization, Math. Program., Ser. B 127, 175–211 (2011). MathSciNetMATHCrossRef B. Recht, W. Xu, B. Hassibi, Null space conditions and thresholds for rank minimization, Math. Program., Ser. B 127, 175–211 (2011). MathSciNetMATHCrossRef
65.
Zurück zum Zitat R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970). MATH R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, 1970). MATH
66.
Zurück zum Zitat M. Rudelson, R. Vershynin, Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements, in CISS 2006 (40th Annual Conference on Information Sciences and Systems) (2006). M. Rudelson, R. Vershynin, Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements, in CISS 2006 (40th Annual Conference on Information Sciences and Systems) (2006).
68.
Zurück zum Zitat N. Srebro, A. Shraibman, Rank, trace-norm and max-norm in 18th Annual Conference on Learning Theory (COLT) (2005). N. Srebro, A. Shraibman, Rank, trace-norm and max-norm in 18th Annual Conference on Learning Theory (COLT) (2005).
71.
Zurück zum Zitat K. Toh, S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, Pac. J. Optim. 6, 615–640 (2010). MathSciNetMATH K. Toh, S. Yun, An accelerated proximal gradient algorithm for nuclear norm regularized least squares problems, Pac. J. Optim. 6, 615–640 (2010). MathSciNetMATH
72.
Zurück zum Zitat S. van de Geer, P. Bühlmann, On the conditions used to prove oracle results for the Lasso, Electron. J. Stat. 3, 1360–1392 (2009). MathSciNetCrossRef S. van de Geer, P. Bühlmann, On the conditions used to prove oracle results for the Lasso, Electron. J. Stat. 3, 1360–1392 (2009). MathSciNetCrossRef
73.
Zurück zum Zitat S. Wright, R. Nowak, M. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process. 57, 2479–2493 (2009). MathSciNetCrossRef S. Wright, R. Nowak, M. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process. 57, 2479–2493 (2009). MathSciNetCrossRef
74.
Zurück zum Zitat W. Xu, B. Hassibi, Compressive sensing over the Grassmann manifold: a unified geometric framework, IEEE Trans. Inform. Theory 57(10), 6894–6919 (2011). MathSciNetCrossRef W. Xu, B. Hassibi, Compressive sensing over the Grassmann manifold: a unified geometric framework, IEEE Trans. Inform. Theory 57(10), 6894–6919 (2011). MathSciNetCrossRef
75.
Zurück zum Zitat W. Yin, S. Osher, J. Darbon, D. Goldfarb, Bregman iterative algorithms for compressed sensing and related problems, SIAM J. Imaging Sci. 1, 143–168 (2008). MathSciNetMATHCrossRef W. Yin, S. Osher, J. Darbon, D. Goldfarb, Bregman iterative algorithms for compressed sensing and related problems, SIAM J. Imaging Sci. 1, 143–168 (2008). MathSciNetMATHCrossRef
Metadaten
Titel
The Convex Geometry of Linear Inverse Problems
verfasst von
Venkat Chandrasekaran
Benjamin Recht
Pablo A. Parrilo
Alan S. Willsky
Publikationsdatum
01.12.2012
Verlag
Springer-Verlag
Erschienen in
Foundations of Computational Mathematics / Ausgabe 6/2012
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-012-9135-7