Skip to main content
Erschienen in: Foundations of Computational Mathematics 2/2017

30.11.2015

Random Gradient-Free Minimization of Convex Functions

verfasst von: Yurii Nesterov, Vladimir Spokoiny

Erschienen in: Foundations of Computational Mathematics | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we prove new complexity bounds for methods of convex optimization based only on computation of the function value. The search directions of our schemes are normally distributed random Gaussian vectors. It appears that such methods usually need at most n times more iterations than the standard gradient methods, where n is the dimension of the space of variables. This conclusion is true for both nonsmooth and smooth problems. For the latter class, we present also an accelerated scheme with the expected rate of convergence \(O\Big ({n^2 \over k^2}\Big )\), where k is the iteration counter. For stochastic optimization, we propose a zero-order scheme and justify its expected rate of convergence \(O\Big ({n \over k^{1/2}}\Big )\). We give also some bounds for the rate of convergence of the random gradient-free methods to stationary points of nonconvex functions, for both smooth and nonsmooth cases. Our theoretical results are supported by preliminary computational experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In [15], u was uniformly distributed over a unit ball. In our comparison, we use a direct translation of the constructions in [15] into the language of the normal Gaussian distribution.
 
2
Presence of this oracle is the main reason why we call our methods gradient free (not derivative free!). Indeed, directional derivative is a much simpler object as compared with the gradient. It can be easily defined for a very large class of functions. At the same time, definition of the gradient (or subgradient) is much more involved. It is well known that in nonsmooth case, collection of partial derivatives is not a subgradient of convex function. For nonsmooth nonconvex functions, the possibility of computing a single subgradient needs a serious mathematical justification [17]. On the other hand, if we have an access to a program for computing the value of our function, then the program for computing directional derivatives can be obtained by a trivial automatic forward differentiation.
 
3
The rest of the proof is very similar to the proof of Lemma 2.2.4 in [16]. We present it here just for the reader convenience.
 
Literatur
1.
Zurück zum Zitat A. Agarwal, O. Dekel, and L. Xiao, Optimal algorithms for online convex optimization with multi-point bandit feedback, in Proceedings of the 23rd Annual Conference on Learning, 2010, pp. 2840. A. Agarwal, O. Dekel, and L. Xiao, Optimal algorithms for online convex optimization with multi-point bandit feedback, in Proceedings of the 23rd Annual Conference on Learning, 2010, pp. 2840.
2.
Zurück zum Zitat A. Agarwal, D. Foster, D. Hsu, S. Kakade, and A. Rakhlin, Stochastic convex optimization with bandit feedback,. SIAM J. on Optimization, 23 (2013), pp. 213-240.MathSciNetCrossRefMATH A. Agarwal, D. Foster, D. Hsu, S. Kakade, and A. Rakhlin, Stochastic convex optimization with bandit feedback,. SIAM J. on Optimization, 23 (2013), pp. 213-240.MathSciNetCrossRefMATH
4.
Zurück zum Zitat F. Clarke, Optimization and nonsmooth analysis, Wliley, New York, 1983.MATH F. Clarke, Optimization and nonsmooth analysis, Wliley, New York, 1983.MATH
5.
Zurück zum Zitat A. Conn, K. Scheinberg, and L. Vicente , Introduction to derivative-free optimization. MPS-SIAM series on optimization, SIAM, Philadelphia, 2009.CrossRefMATH A. Conn, K. Scheinberg, and L. Vicente , Introduction to derivative-free optimization. MPS-SIAM series on optimization, SIAM, Philadelphia, 2009.CrossRefMATH
7.
Zurück zum Zitat J. Duchi, M.I. Jordan, M.J. Wainwright, and A. Wibisono, Finite sample convergence rate of zero-order stochastic optimization methods, in NIPS, 2012, pp. 1448-1456. J. Duchi, M.I. Jordan, M.J. Wainwright, and A. Wibisono, Finite sample convergence rate of zero-order stochastic optimization methods, in NIPS, 2012, pp. 1448-1456.
8.
Zurück zum Zitat A. D. Flaxman, A.T. Kalai, and B.H. Mcmahan, Online convex optimization in the bandit setting: gradient descent without a gradient, in Proceedings of the 16th annual ACM-SIAM symposium on Discrete Algorithms, 2005, pp. 385-394 . A. D. Flaxman, A.T. Kalai, and B.H. Mcmahan, Online convex optimization in the bandit setting: gradient descent without a gradient, in Proceedings of the 16th annual ACM-SIAM symposium on Discrete Algorithms, 2005, pp. 385-394 .
9.
Zurück zum Zitat R. Kleinberg, A. Slivkins, and E. Upfal, Multi-armed bandits in metric spaces, in Proceedings of the 40th annual ACM symposium on Theory of Computing, 2008, pp. 681-690. R. Kleinberg, A. Slivkins, and E. Upfal, Multi-armed bandits in metric spaces, in Proceedings of the 40th annual ACM symposium on Theory of Computing, 2008, pp. 681-690.
10.
Zurück zum Zitat J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of the Nelder-Mead Simplex Algorithm in low dimensions, SIAM J. Optimization, 9 (1998), pp. 112-147.CrossRefMATH J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of the Nelder-Mead Simplex Algorithm in low dimensions, SIAM J. Optimization, 9 (1998), pp. 112-147.CrossRefMATH
11.
Zurück zum Zitat J. C. Lagarias, B. Poonen, and M. H. Wright, Convergence of the restricted Nelder-Mead algorithm in two dimensions, SIAM J. Optimization, 22 (2012), pp. 501-532.MathSciNetCrossRefMATH J. C. Lagarias, B. Poonen, and M. H. Wright, Convergence of the restricted Nelder-Mead algorithm in two dimensions, SIAM J. Optimization, 22 (2012), pp. 501-532.MathSciNetCrossRefMATH
12.
14.
Zurück zum Zitat A. Nemirovski, A. Juditsky, G. Lan, and A.Shapiro, Robust Stochastic Approximation approach to Stochastic Programming, SIAM J. on Optimization, 19 (2009), pp. 1574-1609.MathSciNetCrossRefMATH A. Nemirovski, A. Juditsky, G. Lan, and A.Shapiro, Robust Stochastic Approximation approach to Stochastic Programming, SIAM J. on Optimization, 19 (2009), pp. 1574-1609.MathSciNetCrossRefMATH
15.
Zurück zum Zitat A. Nemirovsky and D.Yudin, Problem complexity and method efficiency in optimization, John Wiley and Sons, New York, 1983. A. Nemirovsky and D.Yudin, Problem complexity and method efficiency in optimization, John Wiley and Sons, New York, 1983.
16.
17.
18.
Zurück zum Zitat Yu. Nesterov, Random gradient-free minimization of convex functions, CORE Discussion Paper # 2011/1, (2011). Yu. Nesterov, Random gradient-free minimization of convex functions, CORE Discussion Paper # 2011/1, (2011).
19.
Zurück zum Zitat Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. on Optimization, 22 (2012), pp. 341-362.MathSciNetCrossRefMATH Yu. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. on Optimization, 22 (2012), pp. 341-362.MathSciNetCrossRefMATH
20.
Zurück zum Zitat B. Polyak, Introduction to Optimization. Optimization Software - Inc., Publications Division, New York, 1987.MATH B. Polyak, Introduction to Optimization. Optimization Software - Inc., Publications Division, New York, 1987.MATH
21.
Zurück zum Zitat V. Protasov, Algorithms for approximate calculation of the minimum of a convex function from its values, Mathematical Notes, 59 (1996), pp. 69-74.MathSciNetCrossRefMATH V. Protasov, Algorithms for approximate calculation of the minimum of a convex function from its values, Mathematical Notes, 59 (1996), pp. 69-74.MathSciNetCrossRefMATH
Metadaten
Titel
Random Gradient-Free Minimization of Convex Functions
verfasst von
Yurii Nesterov
Vladimir Spokoiny
Publikationsdatum
30.11.2015
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 2/2017
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-015-9296-2

Weitere Artikel der Ausgabe 2/2017

Foundations of Computational Mathematics 2/2017 Zur Ausgabe