Skip to main content
Erschienen in: Foundations of Computational Mathematics 3/2017

21.12.2015

Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws

verfasst von: Ulrik S. Fjordholm, Roger Käppeli, Siddhartha Mishra, Eitan Tadmor

Erschienen in: Foundations of Computational Mathematics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Entropy solutions have been widely accepted as the suitable solution framework for systems of conservation laws in several space dimensions. However, recent results in De Lellis and Székelyhidi Jr (Ann Math 170(3):1417–1436, 2009) and Chiodaroli et al. (2013) have demonstrated that entropy solutions may not be unique. In this paper, we present numerical evidence that state-of-the-art numerical schemes need not converge to an entropy solution of systems of conservation laws as the mesh is refined. Combining these two facts, we argue that entropy solutions may not be suitable as a solution framework for systems of conservation laws, particularly in several space dimensions. We advocate entropy measure-valued solutions, first proposed by DiPerna, as the appropriate solution paradigm for systems of conservation laws. To this end, we present a detailed numerical procedure which constructs stable approximations to entropy measure-valued solutions, and provide sufficient conditions that guarantee that these approximations converge to an entropy measure-valued solution as the mesh is refined, thus providing a viable numerical framework for systems of conservation laws in several space dimensions. A large number of numerical experiments that illustrate the proposed paradigm are presented and are utilized to examine several interesting properties of the computed entropy measure-valued solutions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We have tested at least three types of schemes, TeCNO scheme of [27], the high-resolution HLLC scheme of [44] and the finite volume scheme of [31], and obtained similar non-convergence and instability results as presented above. We strongly suspect that any numerical method will not converge or be stable with respect to perturbations in the initial data for this particular example.
 
Literatur
1.
Zurück zum Zitat L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows. Birkhäuser Basel, 2005.MATH L. Ambrosio, N. Gigli and G. Savaré. Gradient Flows. Birkhäuser Basel, 2005.MATH
2.
Zurück zum Zitat E. J. Balder. Lectures on Young Measures. Université de Paris-Dauphine, 1995. E. J. Balder. Lectures on Young Measures. Université de Paris-Dauphine, 1995.
3.
Zurück zum Zitat J. Ball. A version of the fundamental theorem for Young measures. In PDEs and Continuum Models of Phase Transitions (M. Rascle, D. Serre and M. Slemrod, eds.), Lecture Notes in Physics, vol. 344, Springer, 1989. 207–215. J. Ball. A version of the fundamental theorem for Young measures. In PDEs and Continuum Models of Phase Transitions (M. Rascle, D. Serre and M. Slemrod, eds.), Lecture Notes in Physics, vol. 344, Springer, 1989. 207–215.
4.
Zurück zum Zitat T. J. Barth. Numerical methods for gas-dynamics systems on unstructured meshes. In An Introduction to Recent Developments in Theory and Numerics of Conservation Laws, Lecture Notes in Computational Science and Engineering volume 5, Springer, Berlin. Eds: D. Kroner, M. Ohlberger, and Rohde, C., 1999, 195–285.CrossRef T. J. Barth. Numerical methods for gas-dynamics systems on unstructured meshes. In An Introduction to Recent Developments in Theory and Numerics of Conservation Laws, Lecture Notes in Computational Science and Engineering volume 5, Springer, Berlin. Eds: D. Kroner, M. Ohlberger, and Rohde, C., 1999, 195–285.CrossRef
5.
Zurück zum Zitat S. Bianchini and A. Bressan. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. (2) 161 (2005), no. 1, 223–342.MathSciNetCrossRefMATH S. Bianchini and A. Bressan. Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. of Math. (2) 161 (2005), no. 1, 223–342.MathSciNetCrossRefMATH
6.
Zurück zum Zitat P. Billingsley. Probability and Measure 3rd ed. John Wiley & Sons Inc., 1995. P. Billingsley. Probability and Measure 3rd ed. John Wiley & Sons Inc., 1995.
7.
Zurück zum Zitat P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, Inc, 2008. P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, Inc, 2008.
8.
Zurück zum Zitat Y. Brenier and C. De Lellis and L. Székelyhidi Jr. Weak-Strong Uniqueness for Measure-Valued Solutions. Comm. Math. Phys., 305 (2), 2011, 351–361.MathSciNetCrossRefMATH Y. Brenier and C. De Lellis and L. Székelyhidi Jr. Weak-Strong Uniqueness for Measure-Valued Solutions. Comm. Math. Phys., 305 (2), 2011, 351–361.MathSciNetCrossRefMATH
9.
Zurück zum Zitat A. Bressan, G. Crasta and B. Piccoli. Well-posedness of the Cauchy problem for \(n\times n\) systems of conservation laws. Memoirs of the AMS, 146 (694), 2000. A. Bressan, G. Crasta and B. Piccoli. Well-posedness of the Cauchy problem for \(n\times n\) systems of conservation laws. Memoirs of the AMS, 146 (694), 2000.
11.
Zurück zum Zitat G. Q. Chen and J. Glimm. Kolmogorov’s theory of turbulence and inviscid limit of the Navier-Stokes equations in \(\mathbb{R}^3\). Comm. Math. Phys. 310 (1), 2012, 267–283.MathSciNetCrossRefMATH G. Q. Chen and J. Glimm. Kolmogorov’s theory of turbulence and inviscid limit of the Navier-Stokes equations in \(\mathbb{R}^3\). Comm. Math. Phys. 310 (1), 2012, 267–283.MathSciNetCrossRefMATH
12.
Zurück zum Zitat B. Cockburn, F. Coquel and P. G. LeFloch. Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Numer. Anal., 32 (3), 1995, 687–705.MathSciNetCrossRefMATH B. Cockburn, F. Coquel and P. G. LeFloch. Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Numer. Anal., 32 (3), 1995, 687–705.MathSciNetCrossRefMATH
13.
Zurück zum Zitat B. Cockburn, C. Johnson, C. -W. Shu and E. Tadmor. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture notes in Mathematics 1697, 1997 C.I.M.E. course in Cetraro, Italy, June 1997 (A. Quarteroni ed.), Springer Verlag 1998. B. Cockburn, C. Johnson, C. -W. Shu and E. Tadmor. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture notes in Mathematics 1697, 1997 C.I.M.E. course in Cetraro, Italy, June 1997 (A. Quarteroni ed.), Springer Verlag 1998.
14.
Zurück zum Zitat B. Cockburn and C-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput., 52, 1989, 411–435.MATH B. Cockburn and C-W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput., 52, 1989, 411–435.MATH
15.
Zurück zum Zitat M. G. Crandall and A. Majda. Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1980, 1–21.MathSciNetCrossRefMATH M. G. Crandall and A. Majda. Monotone difference approximations for scalar conservation laws. Math. Comput. 34, 1980, 1–21.MathSciNetCrossRefMATH
16.
Zurück zum Zitat C. Dafermos. Hyperbolic conservation laws in continuum physics. Springer, Berlin, 2000.CrossRefMATH C. Dafermos. Hyperbolic conservation laws in continuum physics. Springer, Berlin, 2000.CrossRefMATH
17.
Zurück zum Zitat C. De Lellis, L. Székelyhidi Jr. The Euler equations as a differential inclusion. Ann. of Math. (2) 170 (2009), no. 3, 1417–1436.MathSciNetCrossRefMATH C. De Lellis, L. Székelyhidi Jr. The Euler equations as a differential inclusion. Ann. of Math. (2) 170 (2009), no. 3, 1417–1436.MathSciNetCrossRefMATH
18.
Zurück zum Zitat E. Chiodaroli, C. De Lellis, O. Kreml. Global ill-posedness of the isentropic system of gas dynamics. Preprint, 2013. E. Chiodaroli, C. De Lellis, O. Kreml. Global ill-posedness of the isentropic system of gas dynamics. Preprint, 2013.
19.
Zurück zum Zitat C. DeLellis and L. Székelyhidi Jr. On the admissibility criteria for the weak solutions of Euler equations. Arch. Rational Mech. Anal. 195 (2010), 225-260.MathSciNetCrossRefMATH C. DeLellis and L. Székelyhidi Jr. On the admissibility criteria for the weak solutions of Euler equations. Arch. Rational Mech. Anal. 195 (2010), 225-260.MathSciNetCrossRefMATH
20.
Zurück zum Zitat S. Demoulini and D. M. A. Stuart and A. E. Tzavaras. Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Archives of Rational Mechanics and Analysis, 205 (3), 2012, 927–961.CrossRefMATH S. Demoulini and D. M. A. Stuart and A. E. Tzavaras. Weak-strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Archives of Rational Mechanics and Analysis, 205 (3), 2012, 927–961.CrossRefMATH
21.
Zurück zum Zitat B. Depres, G. Poette and D. Lucor. Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228 (2009), no. 7, 2443–2467.MathSciNetCrossRefMATH B. Depres, G. Poette and D. Lucor. Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228 (2009), no. 7, 2443–2467.MathSciNetCrossRefMATH
22.
23.
Zurück zum Zitat R. J. DiPerna and A. Majda. Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (4), 1987, 667–689.MathSciNetCrossRefMATH R. J. DiPerna and A. Majda. Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (4), 1987, 667–689.MathSciNetCrossRefMATH
24.
Zurück zum Zitat R. E. Edwards. Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, Inc. (1965). R. E. Edwards. Functional Analysis. Theory and Applications. Holt, Rinehart and Winston, Inc. (1965).
25.
Zurück zum Zitat U. S. Fjordholm, S. Lanthaler and S. Mishra. Statistical solutions of hyperbolic conservation laws I. Theory, In preparation, 2015. U. S. Fjordholm, S. Lanthaler and S. Mishra. Statistical solutions of hyperbolic conservation laws I. Theory, In preparation, 2015.
26.
Zurück zum Zitat U. S. Fjordholm. S. Mishra and E. Tadmor. ENO reconstruction and ENO interpolation are stable. FoCM 13 (2), 2013, 139–159.MathSciNetMATH U. S. Fjordholm. S. Mishra and E. Tadmor. ENO reconstruction and ENO interpolation are stable. FoCM 13 (2), 2013, 139–159.MathSciNetMATH
27.
Zurück zum Zitat U. S. Fjordholm, S. Mishra and E. Tadmor. Arbitrary order accurate essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM J. Num. Anal 50 (2), 2012, 544–573.CrossRefMATH U. S. Fjordholm, S. Mishra and E. Tadmor. Arbitrary order accurate essentially non-oscillatory entropy stable schemes for systems of conservation laws. SIAM J. Num. Anal 50 (2), 2012, 544–573.CrossRefMATH
28.
Zurück zum Zitat U. S. Fjordholm. High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. ETH Zürich dissertation Nr. 21025, 2013. U. S. Fjordholm. High-order accurate entropy stable numerical schemes for hyperbolic conservation laws. ETH Zürich dissertation Nr. 21025, 2013.
29.
Zurück zum Zitat U. S. Fjordholm, S. Mishra and E. Tadmor. Computation of measure valued solutions. Acta Numerica. In preparation, 2016. U. S. Fjordholm, S. Mishra and E. Tadmor. Computation of measure valued solutions. Acta Numerica. In preparation, 2016.
30.
Zurück zum Zitat G. B. Folland. Real Analysis. John Wiley & Sons Inc, 1999. G. B. Folland. Real Analysis. John Wiley & Sons Inc, 1999.
31.
Zurück zum Zitat F. Fuchs, A. McMurry, S. Mishra, N. H. Risebro and K. Waagan. Approximate Riemann solver based high-order finite volume schemes for the MHD equations in multi-dimensions. Comm. Comput. Phys 9, 2011, 324–362.CrossRef F. Fuchs, A. McMurry, S. Mishra, N. H. Risebro and K. Waagan. Approximate Riemann solver based high-order finite volume schemes for the MHD equations in multi-dimensions. Comm. Comput. Phys 9, 2011, 324–362.CrossRef
32.
Zurück zum Zitat H. Frid and I-S. Liu. Oscillation waves in Riemann problems for phase transitions. Quart. Appl. Math. 56 (1), 1998, 115–135.MathSciNetCrossRefMATH H. Frid and I-S. Liu. Oscillation waves in Riemann problems for phase transitions. Quart. Appl. Math. 56 (1), 1998, 115–135.MathSciNetCrossRefMATH
33.
Zurück zum Zitat H. Frid and I-S. Liu. Oscillation waves in Riemann problems inside elliptic regions for conservation laws of mixed type. Z. Angew. Math. Phys. 46 (1995), no. 6, 913–931.MathSciNetCrossRefMATH H. Frid and I-S. Liu. Oscillation waves in Riemann problems inside elliptic regions for conservation laws of mixed type. Z. Angew. Math. Phys. 46 (1995), no. 6, 913–931.MathSciNetCrossRefMATH
34.
Zurück zum Zitat S. Gottlieb, C.-W. Shu and E. Tadmor. High order time discretizations with strong stability properties. SIAM. Review 43, 2001, 89–112.MathSciNetCrossRefMATH S. Gottlieb, C.-W. Shu and E. Tadmor. High order time discretizations with strong stability properties. SIAM. Review 43, 2001, 89–112.MathSciNetCrossRefMATH
35.
Zurück zum Zitat J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (4), 1965, 697-715.MathSciNetCrossRefMATH J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations. Comm. Pure Appl. Math. 18 (4), 1965, 697-715.MathSciNetCrossRefMATH
36.
Zurück zum Zitat J. Glimm, J. Grove and Y. Zhang, Numerical Calculation of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities for Three Dimensional Axisymmetric flows in Cylindrical and Spherical Geometries. Los Alamos Laboratory, Report# LA-UR99-6796, 1999. J. Glimm, J. Grove and Y. Zhang, Numerical Calculation of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities for Three Dimensional Axisymmetric flows in Cylindrical and Spherical Geometries. Los Alamos Laboratory, Report# LA-UR99-6796, 1999.
37.
Zurück zum Zitat E. Godlewski and P.A. Raviart. Hyperbolic Systems of Conservation Laws. Mathematiques et Applications, Ellipses Publ., Paris (1991). E. Godlewski and P.A. Raviart. Hyperbolic Systems of Conservation Laws. Mathematiques et Applications, Ellipses Publ., Paris (1991).
39.
Zurück zum Zitat A. Harten, B. Engquist, S. Osher and S. R. Chakravarty. Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71 (2), 1987, 231–303.MathSciNetCrossRefMATH A. Harten, B. Engquist, S. Osher and S. R. Chakravarty. Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71 (2), 1987, 231–303.MathSciNetCrossRefMATH
40.
Zurück zum Zitat A. Hiltebrand and S. Mishra. Entropy stable shock capturing streamline diffusion space-time discontinuous Galerkin (DG) methods for systems of conservation laws. Num. Math., . 126 (1), 2014, 103-151.CrossRefMATH A. Hiltebrand and S. Mishra. Entropy stable shock capturing streamline diffusion space-time discontinuous Galerkin (DG) methods for systems of conservation laws. Num. Math., . 126 (1), 2014, 103-151.CrossRefMATH
41.
Zurück zum Zitat J. Jaffre, C. Johnson and A. Szepessy. Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Model. Meth. Appl. Sci., 5(3), 1995, 367–386.MathSciNetCrossRefMATH J. Jaffre, C. Johnson and A. Szepessy. Convergence of the discontinuous Galerkin finite element method for hyperbolic conservation laws. Math. Model. Meth. Appl. Sci., 5(3), 1995, 367–386.MathSciNetCrossRefMATH
42.
43.
Zurück zum Zitat C. Johnson and A. Szepessy. On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput., 49 (180), 1987, 427–444.MathSciNetCrossRefMATH C. Johnson and A. Szepessy. On the convergence of a finite element method for a nonlinear hyperbolic conservation law. Math. Comput., 49 (180), 1987, 427–444.MathSciNetCrossRefMATH
44.
Zurück zum Zitat R. Käppeli, S. C. Whitehouse, S. Scheidegger, U.-L. Pen and M. Liebendörfer. FISH: A Three-dimensional Parallel Magnetohydrodynamics Code for Astrophysical Applications. The Astrophysical Journal Supplement, 2011, 195, 20.CrossRef R. Käppeli, S. C. Whitehouse, S. Scheidegger, U.-L. Pen and M. Liebendörfer. FISH: A Three-dimensional Parallel Magnetohydrodynamics Code for Astrophysical Applications. The Astrophysical Journal Supplement, 2011, 195, 20.CrossRef
45.
Zurück zum Zitat S. N. Kruzkhov. irst order quasilinear equations in several independent variables. USSR Math. Sbornik., 10 (2), 1970, 217–243.CrossRef S. N. Kruzkhov. irst order quasilinear equations in several independent variables. USSR Math. Sbornik., 10 (2), 1970, 217–243.CrossRef
46.
Zurück zum Zitat N.N. Kuznetsov. Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. and Math. Phys. 16 (1976), 105–119.CrossRefMATH N.N. Kuznetsov. Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. and Math. Phys. 16 (1976), 105–119.CrossRefMATH
49.
Zurück zum Zitat P. G. LeFloch, J. M. Mercier and C. Rohde. Fully discrete entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal., 40 (5), 2002, 1968–1992.MathSciNetCrossRefMATH P. G. LeFloch, J. M. Mercier and C. Rohde. Fully discrete entropy conservative schemes of arbitrary order. SIAM J. Numer. Anal., 40 (5), 2002, 1968–1992.MathSciNetCrossRefMATH
50.
Zurück zum Zitat R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge university press, Cambridge, 2002.CrossRefMATH R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge university press, Cambridge, 2002.CrossRefMATH
51.
Zurück zum Zitat H. Lim, Y. Yu, J. Glimm, X. L. Li and D. H. Sharp. Chaos, transport and mesh convergence for fluid mixing. Act. Math. Appl. Sin., 24 (3), 2008, 355–368.MathSciNetCrossRefMATH H. Lim, Y. Yu, J. Glimm, X. L. Li and D. H. Sharp. Chaos, transport and mesh convergence for fluid mixing. Act. Math. Appl. Sin., 24 (3), 2008, 355–368.MathSciNetCrossRefMATH
52.
Zurück zum Zitat S. Mishra and C. Schwab. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput., 81(180), 2012, 1979–2018.CrossRefMATH S. Mishra and C. Schwab. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random initial data. Math. Comput., 81(180), 2012, 1979–2018.CrossRefMATH
53.
Zurück zum Zitat S. Mishra, Ch. Schwab and J. Sukys. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions. J. Comput. Phys 231 (8), 2012, 3365–3388.MathSciNetCrossRefMATH S. Mishra, Ch. Schwab and J. Sukys. Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions. J. Comput. Phys 231 (8), 2012, 3365–3388.MathSciNetCrossRefMATH
54.
Zurück zum Zitat S. Mishra, Ch. Schwab and J. Sukys. Monte Carlo and multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws. Uncertainty Quantification in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering Volume 92, 2013, 225–294 S. Mishra, Ch. Schwab and J. Sukys. Monte Carlo and multi-level Monte Carlo finite volume methods for uncertainty quantification in nonlinear systems of balance laws. Uncertainty Quantification in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering Volume 92, 2013, 225–294
55.
Zurück zum Zitat S. Mishra, N.H. Risebro, Ch. Schwab and S. Tokareva Numerical solution of scalar conservation laws with random flux functions. Research report 2012-35, SAM ETH Zürich. S. Mishra, N.H. Risebro, Ch. Schwab and S. Tokareva Numerical solution of scalar conservation laws with random flux functions. Research report 2012-35, SAM ETH Zürich.
56.
Zurück zum Zitat J. Munkres. Algorithms for the Assignment and Transportation Problems Journal of the Society for Industrial and Applied Mathematics, 5 (1), 1957, 32–38.MathSciNetCrossRefMATH J. Munkres. Algorithms for the Assignment and Transportation Problems Journal of the Society for Industrial and Applied Mathematics, 5 (1), 1957, 32–38.MathSciNetCrossRefMATH
57.
Zurück zum Zitat B. Perthame and E. Tadmor. A kinetic equation with kinetic entropy functions for scalar conservation laws. Communications in Mathematical Physics 136, 1991, 501-517.MathSciNetCrossRefMATH B. Perthame and E. Tadmor. A kinetic equation with kinetic entropy functions for scalar conservation laws. Communications in Mathematical Physics 136, 1991, 501-517.MathSciNetCrossRefMATH
59.
Zurück zum Zitat M. Schonbeck. Convergence of solutions to nonlinear dispersion equations. Comm. Par. Diff. Eqns. 7 (8), 1982, 959–1000.CrossRef M. Schonbeck. Convergence of solutions to nonlinear dispersion equations. Comm. Par. Diff. Eqns. 7 (8), 1982, 959–1000.CrossRef
60.
Zurück zum Zitat E. Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws, I. Math. Comp. 49, 1987, 91–103.MathSciNetCrossRefMATH E. Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation laws, I. Math. Comp. 49, 1987, 91–103.MathSciNetCrossRefMATH
61.
Zurück zum Zitat E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Act. Numerica,, 2003, 451-512. E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Act. Numerica,, 2003, 451-512.
62.
Zurück zum Zitat E. Tadmor. Convergence of spectral methods for nonlinear conservation laws. SIAM Journal on Numerical Analysis 26 (1989), 30–44.MathSciNetCrossRefMATH E. Tadmor. Convergence of spectral methods for nonlinear conservation laws. SIAM Journal on Numerical Analysis 26 (1989), 30–44.MathSciNetCrossRefMATH
63.
Zurück zum Zitat L. Tartar. Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Pitman, 1979, 136–212. L. Tartar. Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Pitman, 1979, 136–212.
64.
Zurück zum Zitat C. Villani. Topics in Optimal Transportation. American Mathematical Society, Graduate Studies in Mathematics, Vol. 58 (2013) C. Villani. Topics in Optimal Transportation. American Mathematical Society, Graduate Studies in Mathematics, Vol. 58 (2013)
Metadaten
Titel
Construction of Approximate Entropy Measure-Valued Solutions for Hyperbolic Systems of Conservation Laws
verfasst von
Ulrik S. Fjordholm
Roger Käppeli
Siddhartha Mishra
Eitan Tadmor
Publikationsdatum
21.12.2015
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 3/2017
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-015-9299-z

Weitere Artikel der Ausgabe 3/2017

Foundations of Computational Mathematics 3/2017 Zur Ausgabe