Skip to main content
Log in

Laboratory Evaluation of the Use of Alkaline Phosphate Wastes for the Control of Acidic Mine Drainage

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Pyrrhotite tailings at the abandoned Kettara mine site in Morocco are producing acid mine drainage (AMD). We investigated the use of alkaline phosphate waste (APW) rock from a nearby operating open-pit phosphate mine to control the AMD. The neutralizing potential of the APW, using the Paktunc method, was estimated between 500 and 680 kg CaCO3/t. In laboratory column tests, the addition of 15 wt% APW to the coarse Kettara tailings produced leachates with significantly lower acidities and metal concentrations than unamended controls. The high calcium concentration in the flushed solutions indicates that calcite was responsible for the neutralization. Dolomite dissolution seems to be negligible and fluorapatite was stable under the testing conditions. It was also observed that when the treated solution comes in contact with unweathered Kettara coarse tailings, the pH becomes acidic, although the metal concentrations remain low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aubertin M, Bussière B, Berbier LR (2002) Environnement et gestion des rejets miniers. CD-ROM, P Corporation de l’École Polytechnique de Montréal, Montréal

  • Ayala J, Blanco F, García P, Rodríguez P, Sancho J (1998) Asturias (Spanish) fly ash as heavy metals removal materials. Fuel 77:1147–1154

    Article  Google Scholar 

  • Barrie JD, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 228:3–14

    Google Scholar 

  • Benzaazoua M, Bussière B, Dagenais A-M, Archambault M (2004) Kinetic test comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol 46(8):1086–1101

    Article  Google Scholar 

  • Bertocchi AF, Ghiani M, Peretti R, Zucca A (2006) Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn. J Hazard Mater B134:112–119

    Article  Google Scholar 

  • Blowes DW, Jambor JL (1990) The pore-water geochemistry and the mineralogy of the vadosezone of sulfide tailings, Waite-Amulet, Quebec, Canada. Appl Geochem 5:327–346

    Article  Google Scholar 

  • Blowes DW, Reardon EJ, Jambor JL, Cherry JA (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim Cosmochim Acta 55:965–978

    Article  Google Scholar 

  • Brake SS, Jensen RR, Mattox JM (2003) Effects of coal fly ash amended soils on trace element uptake in plants. Environ Geol 45:680–689

    Article  Google Scholar 

  • Chtaini A, Bellaloui A, Ballivy G, Narasiah S, Lalancette J, Bilodeau C (1997) A study of acid mine drainage control by addition of a alkaline mill paper waste. In: Proc, 4th International Conference on acid rock drainage (ICARD), vol III, Vancouver, pp 1145–1161

  • Cravotta CAIII, Ward SJ, Hammarstrom JM (2008) Downflow limestone beds for treatment of net-acidic, oxic, iron-laden drainage from a flooded anthracite mine, Pennsylvania, USA. 2. Laboratory evaluation. Mine Water Environ 27:67–85

    Article  Google Scholar 

  • Dermatas D, Meng X (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70:377–394

    Article  Google Scholar 

  • Doye I (2005) Évaluation de la capacité de matériaux industriels alcalins à neutraliser des résidus et stériles miniers acides. Université Laval, Thèse de doctorat, p 237

  • Doye I, Duchesne J (2003) Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch-leaching tests. Appl Geochem 18:1197–1213

    Article  Google Scholar 

  • El Khalil H, El Haminai O, Bitton G, Ouazzani N, Boularbah A (2007) Heavy metal contamination from mining sites in South Morocco: monitoring metal content and toxicity of soil runoff and ground water. Environ Monit Assess. doi:10.1007/s10661-007-9671-9

  • Eusden JDJ, Gallaghera L, Eighmy TT, Crannell BS, Krzanowskic JR, Butler LG, Cartledge FK, Emery EF, Shaw EL, Francis CA (2002) Petrographic and spectroscopic characterization of phosphate-stabilized mine tailings from Leadville, Colorado. Waste Manag 22:117–135

    Article  Google Scholar 

  • Evangelou VP (1995) Pyrite oxidation and its control. CRC Press, Boca Raton, p 293

    Google Scholar 

  • Evangelou VP, Huang X (1992) A new technology for armoring and deactivating pyrite. In: Singhal RK, Mehrotra AK, Fytas K, Collins JL (eds) Environmental issues and waste management in energy and minerals production. Balkema, Rotterdam, pp 413–417

    Google Scholar 

  • Felmy AR, Griven JB, Jenne EA (1984) MINTEQ: a computer program for calculating aqueous geochemical equilibria. National Technical Information Services, Springfield

    Google Scholar 

  • Fortin S, Lamontagne A, Poulin R, Tassé N (2000) The use of basic additives to tailings in layered co-mingling to improve AMD control. In: Singhal RK, Mehrotra AK (eds) Proceedings of 6th international conference environmental issues and management of waste in energy and mineral production, Calgary, Alberta, Canada. A. A. Balkema, Rotterdam, pp 549–556

  • Genty T, Bussière B, Potvin R, Benzaazoua M (2008) Neutralization of acid mine drainage in anoxic limestone drains: a laboratory study. Post-Mining 2008, Nancy, France

  • Hakkou R, Benzaazoua M, Bussière B (2007). Use of alkaline phosphate wastes for acidic mine site mitigation. In: Anglada M (ed) Proceedings of 4th Mtg of the European School of Materials Science and Engineering, Barcelona, p 323–328

  • Hakkou R, Benzaazoua M, Bussière B (2008a) Acid mine drainage at the abandoned Kettara mine (Morocco). 1. Environmental characterization. Mine Water Environ 27:145–159

    Article  Google Scholar 

  • Hakkou R, Benzaazoua M, Bussière B (2008b) Acid mine drainage at the abandoned Kettara mine (Morocco). 2. Mine waste geochemical behaviour. Mine Water Environ 27:160–170

    Article  Google Scholar 

  • Jambor JL (1994) Mineralogy of sulfide-rich tailings and their oxidation products. In: Jambor JL, Blowes DW (eds) Short course handbook on environmental geochemistry of sulfide mine wastes, chap 3. Mineralogical Assoc of Canada, Ottawa, pp 59–102

    Google Scholar 

  • Khire M, Benson C, Bosscher P (2000) Capillary barriers design variables and water balance. J Geotech Geoenviron 126(8):695–708

    Article  Google Scholar 

  • Lapakko KA, Antonson DA, Wagner JR (1997) Mixing of limestone with finely crushed acid-producing rock. In: Proceedings of 4th ICARD, vol II, Vancouver, pp 953–970

  • Lapakko KA, Antonson DA, Wagner JR (2000) Mixing of rotary kiln fines with fine-grained acid-producing rock. In: Proceedings of 5th ICARD, vol 2, Denver, pp 901–910

  • Lawrence RW, Wang Y (1997) Determination of neutralization potential in the prediction of acid rock drainage. In: Proceedings of 4th ICARD, vol I, Vancouver, pp 451–464

  • Mehling PE, Day SJ, Sexsmith KS (1997) Blending and layering waste rock to delay, mitigate or prevent acid generation: a case review study. In: Proceedings of 4th ICARD, vol II, Vancouver, BC, Canada, p 951–969

  • Morin KA, Hutt NM (1997) Environmental geochemistry of minesite drainage: practical theory and case studies. MDAG, Vancouver, p 333

    Google Scholar 

  • Mylona E, Xenidis A, Paspaliaris I (2000) Inhibition of acid generation from sulphidic wastes by the addition of small amounts of limenstone. Miner Eng 13:1161–1175

    Article  Google Scholar 

  • OCP (2005) Office Chérifien des Phosphates (Maroc): Bilan annuel des activités, p 100

  • Paktunc AD (1999) Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ Geol 39(2):103–112

    Article  Google Scholar 

  • Paradis M, Duchesne J, Lamontagne A, Isabel D (2007) Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings. Appl Geochem 22:2326–2333

    Article  Google Scholar 

  • Pérez-López R, Nieto JM, Almodóvar GR (2005) The use of alkaline residues for the inhibition of acid mine drainage processes in sulfide-rich mining wastes. In: Loredo J, Pendás F (eds) Proceedings of 9th international mine water assoc (IMWA) congress, Oviedo, Spain, pp 5–10

  • Pérez-López R, Nieto JM, Almodóvar GR (2007) Immobilization of toxic elements in mine residues derived from mining activities in the Iberian pyrite belt (SW Spain): laboratory experiments. Appl Geochem 22:1919–1935

    Article  Google Scholar 

  • Perry EF, Brady KB (1995) Influence of neutralization potential on surface mine drainage quality in Pennsylvania. In: Proceedings of 16th annual surface mine drainage task force symposium, Morgantown

  • Ritcey GM (1989) Tailings management, problems and solutions in the mining industries. Elsevier, Amsterdam, p 970

    Google Scholar 

  • Rose AW, Phelps LB, Parizek RR, Evans DR (1995) Effectiveness of lime kiln flue dust in preventing acid mine drainage at the Kauffman surface coal mine, Clearfield County, Pennsylvania. In: Proceedings of national meeting of the American society for surface mining and reclamation, Gillette, pp 159–171

  • Scanlon BR, Reedy RC, Keese KE, Dwyer SF (2005) Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the Southwestern USA. Vadose Zone J 4:55–71

    Article  Google Scholar 

  • Schippers A, Jozsa PG, Sand W (1998) Evaluation of the efficiency of measures for sulphidic mine waste mitigation. Appl Microbiol Biotechnol 49:698–701

    Article  Google Scholar 

  • Sracek O, Choquette M, Gelinas P, Lefebvre R, Nicholson RV (2004) Geochemical characterization of acid mine drainage from a waste rock pile, Mine Doyon, Quebec, Canada. J Contam Hydrol 69:45–71

    Article  Google Scholar 

  • Villeneuve M (2004) Évaluation du comportement géochimique à long terme de rejets miniers à faible potentiel de génération d’acide à l’aide d’essais cinétiques. Mémoire de maîtrise en génie minéral. École Polytechnique de Montréal, Montréal

    Google Scholar 

  • Skousen J, Rose A, Geidel G, Foreman J, Evans R, Hellier W (1998) Handbook of technologies for avoidance and remediation of acid mine drainage. National Mine Land Reclamation Center, West Virginia Univ, Morgantown

    Google Scholar 

  • Yeheyis MB, Shang JQ, Yanful EK (2008) Characterization and environmental evaluation of Atikokan coal fly ash for environmental applications. J Environ Eng Sci 7:481–498

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the OCP group who provided the samples necessary for this study, Alexandre Marchi (Press photographer in Nancy, France) for permission to use his photographs of the mines, the Canada Research Chairs on the Restoration of Abandoned Mine Sites and the Integrated Management of Sulfide Mine Wastes, and the Unité de Recherche et de Service en Technologie Minérale (UQAT), for their financial and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Hakkou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakkou, R., Benzaazoua, M. & Bussière, B. Laboratory Evaluation of the Use of Alkaline Phosphate Wastes for the Control of Acidic Mine Drainage. Mine Water Environ 28, 206–218 (2009). https://doi.org/10.1007/s10230-009-0081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-009-0081-9

Keywords

Navigation