Skip to main content
Log in

Environmental Isotope Investigation of Groundwater in the Sarcheshmeh Copper Mine Area, Iran

Investigación isotópica ambiental del agua subterránea en el área de la mina de cobre Sarcheshmeh, Irán

伊朗Sarcheshmeh铜矿区地下水之环境同位素研究

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Precipitation, surface, and groundwater samples were collected during 2009–2010 in the Sarcheshmeh copper mine drainage basin, Kerman Province, Iran. Groundwater samples were collected from both shallow and deep aquifers. All of the samples were analyzed for stable isotopes, deuterium (2H), and oxygen-18 (18O), and some were analyzed for tritium (3H). The results show a more restricted range of isotopic composition in groundwater samples than in precipitation samples based on the isotopic composition of the precipitation. The isotopic composition of surface and groundwater samples plot to the right of the local meteoric water line of the Sarcheshmeh area and around the evaporation line, indicating that the groundwater within the study area originates from meteoric water that has undergone secondary evaporation before or during recharge. Tritium was below the detection limit in the deep groundwater samples while shallow groundwater samples had tritium concentrations between 1.2 and 1.7 TU, which indicates a longer residence time for deep groundwater.

Resumen

Se colectaron muestras de aguas subterráneas de superficie y de precipitación durante 2009–2010 en la cuenca de drenaje de la mina de cobre Sarcheshmeh, Provincia de Kermán, Irán. Se recolectaron muestras de aguas subterráneas desde acuíferos profundos y superficiales. En todas las muestras se analizaron isótopos estables, deuterio (2H) y oxígeno18 (18O) y en algunas se analizó tritio (3H). Los resultados muestran una composición isotópica en las muestras subterráneas en un rango más restringido que en las muestras de precipitación basadas en la composición isotópica de esta última. La composición isotópica de las muestras de agua subterráneas y de superficie caen a la derecha de la línea de agua meteórica local (LMWL) del área de Sarcheshmeh y alrededor de la línea de evaporación indicando que el agua subterránea dentro del área de estudio se origina desde agua meteórica que sufre una evaporación secundaria antes o durante la recarga. El tritio estuvo por debajo del límite de detección en las muestras de agua subterránea profunda mientras que las muestras de agua subterránea superficial tenían concentraciones de tritio entre 1,2 y 1,7 TU, lo que indica un largo tiempo de residencia para el agua subterránea profunda.

抽象

于2009–2010年间,在伊朗 克尔曼省(Kerman)的Sarcheshmeh铜矿区采集了大气降水、地表水和地下水水样。地下水水样分别取自浅层和深层含水层。所有水样都进行了稳定同位素氘(2H)和 18O测试,部分水样进行了氚(3H)分析。试验结果表明,地下水同位素组份范围比大气降水更窄。地表水和地下水样同位素组成分布于Sarcheshmeh地区当地降水线(LMWL)的右侧和蒸发线周围,表明研究区域内地下水来源于降水,且降水在补给地下水之前或补给过程中经受了第二次蒸发。深层地下水样的氚浓度低于检测极限,而浅层地下水样的氚浓度在1.2至1.7 TU 之间,表明深层地下水的滞留时间更长。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abbott MD, Lini A, Bierman PR (2000) δ18O, δD and 3H measurements constrain groundwater recharge patterns in an upland fractured bedrock aquifer Vermont USA. J Hydrol 228:101–112

    Article  Google Scholar 

  • Abu-Jaber N, Kharabsheh A (2008) Ground water origin and movement in the upper Yarmouk basin, northern Jordan. Environ Geol 54:1355–1365

    Article  Google Scholar 

  • Acheampong SY, Hess JW (2000) Origin of the shallow groundwater system in the southern Voltaian Sedimentary Basin of Ghana: an isotopic approach. J Hydrol 233:37–53

    Article  Google Scholar 

  • Axel H (2006) Use of stable and radioactive isotopes and gaseous tracers for estimating groundwater recharge time of residence mixing of the different types of groundwater and origin in the Silao Romita aquifer Guanajuato central Mexico. Freiberg Online Geol, vol 17

  • Chen Z, Nie Z, Zhang G, Wan L, Shen J (2006) Environmental isotopic study on the recharge and residence time of groundwater in the Heihe River Basin northwestern China. Hydrogeol J 14:1635–1651

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publication, Boca Raton

    Google Scholar 

  • Cloutier V, Lefebvre R, Savard R, Bourque E, Therrien R (2006) Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system St Lawrence Lowlands Quebec Canada. Hydrogeol J 14:573–590

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  • Drimme RJ, Shouakar-Stash O, Walters R, Heemskerk AR (2001) Hydrogen isotope ratio of H2O by automatic elemental analysis-continuous flow-isotope ratio mass spectrometry. Technical procedure 4.1, Rev 00. Environmental Isotope Laboratory, Department of Earth Sciences, University of Waterloo, Canada

  • Edmunds WM, Darling WG, Kinniburgh DG, Kotoub S, Mahgoub S (1992) Sources of recharge at Abu Delaig, Sudan. J Hydrol 131:1–24

    Article  Google Scholar 

  • Engle MA, Goff F, Jewett DG, Reller GJ, Bauman JB (2008) Application of environmental groundwater tracers at the Sulphur Bank Mercury Mine, California, USA. Hydrogeol J 16:559–573

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Cosmochim Acta 4:213–224

    Article  Google Scholar 

  • Fantong WY, Satake H, Aka FT, Ayonghe SN, Asai K, Mandal AK, Ako AA (2010) Hydrochemical and isotopic evidence of recharge apparent age and flow direction of groundwater in the Mayo Tsanaga River Basin Cameroon: bearings on contamination. Environ Earth Sci 60:107–120

    Article  Google Scholar 

  • Faure G (1986) Principles of isotope geology. Wiley, New York

    Google Scholar 

  • Friedman I, Machta L, Soiler R (1962) Water-vapor exchange between a water droplet and its environment. J Geophys Res 67:2761–2766

    Article  Google Scholar 

  • Gat JR (1971) Comments on the stable isotope method in regional groundwater investigations. Water Resour Res 7:980–993

    Article  Google Scholar 

  • Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Article  Google Scholar 

  • Geirnaert W, Groenand M, Van der Sommen J (1984) Isotope studies as a final stage in groundwater investigations on the African shield. In: Challenges in African hydrology and water resources. IAHS publication, Harare, no 144, pp 141–153

  • Girard P, Hillaire-Marcel C, Oga MS (1997) Determining the recharge mode of sahelian aquifers using water isotopes. J Hydrol 197:189–202

    Article  Google Scholar 

  • Goni BI (2006) Tracing stable isotope values from meteoric water to groundwater in the southwestern part of the Chad basin. Hydrogeol J 14:742–752

    Article  Google Scholar 

  • Gupta H, Ray S (2007) Geothermal energy: an alternative resource for the 21st century. Elsevier, Amsterdam

    Google Scholar 

  • Hamed Y, Dassi L, Tarki M, Ahmadi R, Mehdi K, Ben Dhia H (2011) Groundwater origins and mixing pattern in the multilayer aquifer system of the Gafsa-south mining district: a chemical and isotopic approach. Environ Earth Sci 63:1355–1368

    Article  Google Scholar 

  • Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley-Interscience, New York

    Book  Google Scholar 

  • Khademi H, Mermut AR, Krouse HR (1997) Isotopic composition of gypsum hydration water in selected landforms from central Iran. Chemical Geol 138:245–255

    Article  Google Scholar 

  • Lee KS, Wenner DB, Lee I (1999) Using H and O isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island Korea. J Hydrol 222:65–74

    Article  Google Scholar 

  • Leontiadis IL, Vergis S, Christodoulou TH (1996) Isotope hydrology study of areas in Eastern Macedonia and Thrace, Northern Greece. J Hydrol 182:1–17

    Article  Google Scholar 

  • Leybourne MI, Goodfellow WD (2007) Br/Cl ratios and O, H, C and B isotopic constraints on the origin of saline waters from eastern Canada. Geochim Cosmochim Acta 71:2209–2223

    Article  Google Scholar 

  • Leybourne MI, Clark ID, Goodfellow WD (2006) Stable isotope geochemistry of ground and surface waters associated with undisturbed massive sulfide deposits; constraints on origin of waters and water–rock reactions. Chemical Geol 231:300–325

    Article  Google Scholar 

  • Matter JM, Waber HN, Loew S, Matter A (2005) Recharge areas and geochemical evolution of groundwater in an alluvial aquifer system in the Sultanate of Oman. Hydrogeol J 14:203–224

    Article  Google Scholar 

  • Mohammadi Z (2006) Method of leakage study at karst dam sites, Zagros zone, Iran. PhD Thesis, University of Shiraz, Iran

  • Mohammadzadeh H (2010) The meteoric relationship for18O and 2H in precipitations and isotopic compositions of water resources in Mashhad area (NE Iran). In: Proceeding of 1st international applied geological congress, Mashhad, Iran

  • Mohammadzadeh H, Ebrahimpoor S (2012) Application of stable isotope and hydrogeochemistry to investigate the origin and water resources quality variations in Zarivar lake catchment area. J Water Soil 26(4):1018–1041 (in Persian)

    Google Scholar 

  • Morton KL, Mekerk FA (1993) A phased approach to mine dewatering. Mine Water Environ 12:27–34

    Google Scholar 

  • Njitchoua R, Dever L, Fontes JC, Naah E (1997) Geochemistry origin and recharge mechanisms of groundwaters from the Garoua Sandstone aquifer, northern Cameroon. J Hydrol 190:123–140

    Article  Google Scholar 

  • Ortega-Guerrero A (2003) Origin and geochemical evolution of groundwater in a closed-basin clayey aquitard, northern Mexico. J Hydrol 284:26–44

    Article  Google Scholar 

  • Rose TP, Davisson ML, Hudson GB, Varian AR (1997) Environmental isotope investigation of groundwater flow in the Honey Lake basin, California and Nevada. Isotope Sciences Div, Lawrence Livermore National Lab, Livermore, CA, USA

  • Sahraei Parizi H, Samani N (2012) Geochemical evolution and quality assessment of water resources in the Sarcheshmeh copper mine area (Iran) using multivariate statistical techniques. Environ Earth Sci 69(5):1699–1718

    Article  Google Scholar 

  • Shahabpour J (1982) Aspects of alteration and mineralization at the Sarcheshmeh copper-molybdenum deposit, Kerman, Iran. PhD thesis, Leeds University, UK

  • Shahabpour J, Kramers JD (1987) Lead isotope data from the Sarcheshmeh porphyry copper deposit, Kerman, Iran. Miner Depos 22:278–281

    Article  Google Scholar 

  • SRK (2011) Sarcheshmeh copper mine open pit design; main report. SRK Consulting Ltd, Wales

    Google Scholar 

  • Wassenaar LI, Athanasopoulos P, Hendry MJ (2011) Isotope hydrology of precipitation, surface and ground waters in the Okanagan Valley, British Columbia, Canada. J Hydrol 411(1):37–48

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Iranian Copper Industries Co. for funding this work. Part of this research was carried out when the second author visited the University of Waterloo, Canada. Constructive comments given by the Editor-in-Chief, the Associate Editor (Led Murray), and two anonymous reviewers are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozar Samani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parizi, H.S., Samani, N. Environmental Isotope Investigation of Groundwater in the Sarcheshmeh Copper Mine Area, Iran. Mine Water Environ 33, 97–109 (2014). https://doi.org/10.1007/s10230-014-0277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-014-0277-5

Keywords

Navigation