Skip to main content
Log in

Numerical Simulation of Water Flow from the Coal Seam Floor in a Deep Longwall Mine in China

Numerische Simulation von Wasserzuflüssen aus dem Kohlenflözliegenden in einer tiefen Strebbaugrube in China

Simulación numérica del flujo de agua en el piso de la veta de carbón en la mina profunda de frente largo en China

深部走向长壁工作面的煤层底板突水数值模拟(中国)

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The study of groundwater flow from the coal seam floor is critical to safe mining operations in China. We developed a numerical simulation model to describe flood water pathways during mining, using the field conditions present at the no. 4196 west work face in the Panxi longwall coal mine, Shandong Province, China, Groundwater flow analysis revealed unusual values for the failure depth of the coal seam floor. The high ground stress and underground pressure, excavation length, width of working face, poor mechanical properties of aquitards, and expansion of fractures by groundwater infiltration all contribute to groundwater flow into the mine. The modeling results predict the time and longwall locations associated with the maximum likelihood of flood occurrence. Such results can be used by decision makers to improve mine design and safety.

Zusammenfassung

Entwickelt wurde ein numerisches Simulationsmodell zur Beschreibung von während des Abbaubetriebs auftretenden Wasserzuflüssen, und zwar unter Verwendung der realen Bedingungen im Streb Nr. 4196 West der Kohlengrube Panxi, Provinz Shandong, China. Die Analyse der Grundwasserströmung offenbarte ungewöhnliche Werte für die Versagensteufe des Flözliegenden. Hohe Bodenpressung, die Erstreckung des Abbauraums in Verhiebsrichtung, die Breite der Abbaufront, eine geringe mechanische Standfestigkeit der Grundwasserhemmer sowie Kluftöffnung infolge Grundwasserinfiltration tragen zum Grundwasserzufluss zur Grube bei. Als Modellergebnis werden Zeitpunkt und Streb-Lokation von Zuflussereignissen maximaler Wahrscheinlichkeit prognostiziert. Derartige Ergebnisse können von den zuständigen Entscheidungsträgern zur Verbesserung der Bergwerksplanung und zur Erhöhung der Arbeitssicherheit genutzt werden.

Resumen

Hemos desarrollado un modelo de simulación numérica para describir las etapas de la inundación durante la explotación minera, usando las condiciones de campo presentes en la cara de trabajo oeste n° 4196 en la mina de carbón de frente largo Panxi, provincia de Shandong, China. El análisis del flujo de agua subterránea reveló inusuales valores para la profundidad de la falla en el piso de la veta de carbón. El elevado estrés del piso, la presión subterránea, la longitud de la excavación, el ancho de la cara de trabajo, las pobres propiedades mecánicas de los acuitardos y la expansión de fracturas por la infiltración de agua subterránea, contribuyen al flujo de agua subterránea dentro de la mina. Los resultados del modelado predicen el tiempo y los lugares de frente alto asociados con la máxima probabilidad de ocurrencia de inundaciones. Estos resultados pueden ser usados para que los tomadores de decisiones mejoren el diseño de la mina y de la seguridad.

摘要

建立了潘西矿(中国山东)4196西长壁工作面底板突水数值模型,模拟开采期间突水路径的形成及演化过程 。地下水流分析可以揭示煤层底板破坏深度。高地应力与高矿山压力、工作面开采长度、工作面宽度、底板弱透水层力学性能及地下水入渗透引起的原始裂隙扩展等都是影响煤矿突水的重要因素。模拟结果预测了深矿井开采最有可能发生突水时间和突水位置。研究成果有利于决策者改进生产设计和提高生产安全性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Feng Q, Yang T, Yu Q, Tang C, Feng X (2006) Numerical simulation on water inrush from the seam floor based on the coupled analysis of seepage and damage. J Saf Environ 3:1–4

    Google Scholar 

  • Gu X, Wang J, Liu Y (2010) Water resistant features of high-risk outburst coal seams and standard discriminant model of mining under water-pressure. Min Sci Technol 20:797–802

    Google Scholar 

  • He M, Xie H, Peng S, Jiang Y (2005) Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng 16:2803–2813

    Google Scholar 

  • Huang Z, Jiang Z, Qian Z, Cao D (2014a) Analytical and experimental study of water seepage propagation behavior in the fault. Acta Geodyn Geomater 176:361–370. doi:10.13168/agg.2014.0017

    Google Scholar 

  • Huang Z, Jiang Z, Zhu S, Qia Z, Cao D (2014b) Characterizing the hydraulic conductivity of rock formations between deep coal and aquifers using injection tests. Int J Rock Mech Min Sci 71:12–18. doi:10.1016/j.ijrmms.2014.06.017

    Google Scholar 

  • Jiang Q (2009) Coal floor strata failure depth test of working face at big mining depth. J Coalfield Geol Explor 4:30–33

    Google Scholar 

  • Jin D, Zheng G, Liu Z, Liu Y, Pang X (2011) Real-time monitoring and early warning techniques of water inrush through coal floor. Proc Earth Planet Sci 3:37–46

    Article  Google Scholar 

  • Kang H (2013) Stress distribution characteristics and strata control technology for roadways in deep coal mines. Coal Sci Technol 9:12–17

    Google Scholar 

  • Kang H, Lin J, Zhang X (2007) Research and application of in situ stress measurement in deep mines. Chin J Rock Mech Eng 5:929–933

    Google Scholar 

  • Kong L, Qi Q, Jiang F, Ouyang Z (2012) Abnormal strata stress resulted from goaf square of longwall face based on micro-seismic monitoring. Chin J Rock Mech Eng 2:3879–3896

    Google Scholar 

  • Li L, Xu T, Tang C, Zhu L (2007) Numerical simulation of creep induced progressive failure process of rock under uniaxial compression. Rock Soil Mech 9:1978–1982

    Google Scholar 

  • Li L, Tang C, Ma T (2008) Research on the closure and creep mechanism of circular tunnels. J Coal Sci Eng 2:195–199

    Article  Google Scholar 

  • Li L, Tang C, Li G, Yang T (2009a) Damage evolution and delayed groundwater inrush from micro faults in coal seam floor. Chin J Geotech Eng 12:1837–1844

    Google Scholar 

  • Li L, Tang C, Liang Z, Ma T, Zhang Y (2009b) Numerical analysis of pathway formation of groundwater inrush from faults in coal seam floor. Chin J Rock Mech Eng 2:290–297

    Google Scholar 

  • Li H, Bai H, Jiao Y, Yang C (2013) Water injection test and numerical analysis of the mining-induced failure depth of floor. Electron J Geotech Eng 18(1):849–857

    Google Scholar 

  • Li L, Zhou Z, Li S, Xue Y, Xu Z, Shi S (2014) An attribute synthetic valuation system for risk assessment of floor water inrush in coal mines. Mine Water Environ. doi:10.1007/s10230-014-0318-0

    Google Scholar 

  • Mahdi S, Charliec L (2012) Numerical modeling of longwall mining and stability analysis of the gates in a coal mine. Int J Rock Mech Min Sci 51:24–34. doi:10.1016/j.ijrmms.2012.02.002

    Article  Google Scholar 

  • Pang Y, Wang G, Ding Z (2014) Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments. Int J Coal Sci Technol 4:428–433. doi:10.1007/s40789-014-0049-7

    Article  Google Scholar 

  • Qian M, Miao X, Li L (1995) Mechanism of fracture behavior of main floor in longwall mining. Chin J Geotech Eng 6:55–62

    Google Scholar 

  • Shi L, Zhu L, Han J, Su B, Yin W, Li G (2005) Monitor study on broken floor depth caused by underground pressure. Coal Geol Explor 6:20–23

    Google Scholar 

  • Tang C, Tham L, Lee P, Yang T, Li L (2002) Coupling analysis of flow, stress and damage (FSD) in rock failure. Int J Rock Mech Min Sci 4:477–489. doi:10.1016/S1365-1609(02)00023-0

    Article  Google Scholar 

  • Wang J, Park H (2003) Coal mining above a confined aquifer. Int J Rock Mech Min Sci 40:537–551. doi:10.1016/S1365-1609(03)00029-7

    Article  Google Scholar 

  • Wang S, Sloan S, Sheng D, Tang C (2012a) Numerical analysis of the failure process around a circular opening in rock. Comput Geotech 39:8–16. doi:10.1016/j.compgeo.2011.08.004

    Article  Google Scholar 

  • Wang Y, Yang W, Li M, Liu X (2012b) Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation. Int J Rock Mech Min Sci 52:50–55. doi:10.1016/j.ijrmms.2012.03.006

    Article  Google Scholar 

  • Wu Q, Liu Y, Liu D, Zhou W (2011) Prediction of floor water inrush: the application of GIS-based AHP vulnerable index method to Donghuantuo Coal Mine, China. Rock Mech Rock Eng 44:591–600. doi:10.1007/s00603-011-0146-5

    Article  Google Scholar 

  • Wu Q, Fan S, Zhou W, Liu S (2013) Application of the analytic hierarchy process to assessment of water inrush: a case study for the no. 17 coal seam in the Sanhejian Coal Mine, China. Mine Water Environ 32:229–238. doi:10.1007/s10230-013-0228-6

    Article  Google Scholar 

  • Xie G, Chang J, Yang K (2009) Investigations into stress shell characteristics of surrounding rock in fully mechanized top-coal caving face. Int J Rock Mech Min Sci 46:172–181. doi:10.1016/j.ijrmms.2008.09.006

    Article  Google Scholar 

  • Xu Y, Yang Y (2013) Application analysis on statistical formula for failure depth of coal seam floor in deep mine. Coal Sci Technol 9:129–132

    Google Scholar 

  • Yang T, Liu ZhuW, Elsworth D, Tham L, Tang C (2007) A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations. Int J Rock Mech Min Sci 44:87–97. doi:10.1016/j.ijrmms.2006.04.012

    Article  Google Scholar 

  • Yang W, Lin B, Qu Y, Li Z, Zhai C, Jia L, Zhao W (2011) Stress evolution with time and space during mining of a coal seam. Int J Rock Mech Min Sci 48:1145–1152. doi:10.1016/j.ijrmms.2011.07.006

    Article  Google Scholar 

  • Yin H (2005) Study of water-inrush mechanism and prediction of coal bed floor in Pan-xi coal field. Shandong University of Science and Technology, Qingdao, pp 36–38

    Google Scholar 

  • Yin H, Wei J, Li Z, Shi L (2007) Analysis on water inrush mechanism in fracture tectonics of Panxi coalmine. J Shandong Univ Sci Technol 1:30–33

    Google Scholar 

  • Zhang J (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42:350–360. doi:10.1016/j.ijrmms.2004.11.010

    Article  Google Scholar 

  • Zhu S, Jiang Z, Zhou K, Peng G, Yang C (2014) The characteristics of deformation and failure of coal seam floor due to mining of the Xinmin coal mine in China. Bull Eng Geol Environ 73:1151–1163. doi:10.1007/s10064-014-0612-x

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by: the National Basic Research Program of China (973 Project, Grant 2012CB723104), the National Nature Science Foundation of China (Grants 41372290 and 41402250), the National Nature Science Foundation of Shandong Province (Grant ZR2013EEQ 019), the State Key Laboratory of Mining Disaster Prevention and Control (Grant MDPC2012KF13), and the innovative research team of Shandong University of Science and Technology (Grant 2012KYTD101). The authors also thank the technicians in the Department of Geology and Survey in Panxi coal mine for their data collection, and the anonymous reviewers and the editors for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiyong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Wei, J., Lefticariu, L. et al. Numerical Simulation of Water Flow from the Coal Seam Floor in a Deep Longwall Mine in China. Mine Water Environ 35, 243–252 (2016). https://doi.org/10.1007/s10230-016-0385-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-016-0385-5

Keywords

Navigation