Skip to main content
Log in

Hydrochemical and Stable Isotope (δD and δ18O) Characteristics of Groundwater and Hydrogeochemical Processes in the Ningtiaota Coalfield, Northwest China

Charakteristik der Grundwasserbeschaffenheit und der stabilen Isotope (δD and δ18O) sowie von hydrogeochemischen Prozessen im Ningtiaota Kohlefeld, Nordwest China

Características hidroquímicas e isotópicas estables (δD y δ18O) de las aguas subterráneas y de los procesos hidrogeoquímicos en el campo de carbón Ningtiaota, Noroeste de China

柠条塔煤矿(中国西北)地下水水化学和同位素(δD和δ18O)特征及水文地球化学过程

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Understanding the sources and mechanisms of groundwater recharge in the Ningtiaota Coalfield, an arid area in northwest China, is important for water resources management and coal mine safety. Hydrochemical and stable hydrogen and oxygen isotopic data were used to study water–rock interactions and groundwater recharge in the area. A total of 45 water samples, including surface water, Quaternary groundwater, and Jurassic Zhiluo Group (J2z) and Yan’an Group (J2y) groundwater, were collected for major ions and stable isotope (δD and δ18O) analyses. Our results showed that the groundwater originated from atmospheric precipitation, and experienced weak evaporation during infiltration. Water in the study area has a low salinity and is dominated by HCO3–Ca type. The dominant water–rock interactions in the Jurassic Zhiluo Group (J2z) groundwater were dissolution of silicate minerals, gypsum, and halite and cation exchange. The results may aid in water resources management and groundwater inrush prevention in the coalfield and at other coal mines.

Zusammenfassung

Sowohl für das Wassermanagement als auch für die Sicherheit des Kohlebergbaus ist es wichtig, den Antrieb und den Mechanismus von Grundwasserneubildungsprozessen im Ningtiaota Kohlefeld, eines ariden Gebietes in Nordwest China, zu verstehen. Somit wurden die Grundwasserbeschaffenheit sowie stabile Wasserstoff- und Sauerstoffisotope untersucht, um Aufschluss über die Wasser-Gesteins-Wechselwirkungen und die Grundwasserneubildung der Region zu erhalten. Insgesamt sind 45 Wasserproben entnommen worden, in denen die Hauptelemente und stabile Isotope (δD and δ18O) analysiert worden sind. Die Proben stammen aus Oberflächenwasser, quartärem Grundwasser sowie aus Grundwasser der jurassischen Zhiluo- (J2z) und Yan'an-Gruppe (J2y). Die Ergebnisse zeigen, dass das Grundwasser aus Niederschlägen stammt, wobei relativ geringe Verdunstungsverluste während der Infiltration auftreten. Das Wasser weist eine geringe Salinität auf und kann als HCO3-Ca-Typ klassifiziert werden. Die hautsächlichen Prozesse in der jurassischen Zhiluo-Gruppe (J2z) sind Silikat-, Gips- und Halit-Lösungsvorgänge sowie ein Kationenaustausch. Die Untersuchungen können beim Wasserresourcen-Management behilflich sein sowie im Rahmen von Vorsorgemaßnahmen vor großen Wassereintritten in Kohlebergbaue genutzt werden.

Resumen

El conocimiento de las fuentes y de los mecanismos de recarga de aguas subterráneas en el campo de carbón Ningtiaota, una región árida en el noroeste de China, es de interés para el manejo de los recursos hídricos y para la seguridad en la mina de carbón. Los datos hidroquímicos y de los isótopos estables de hidrógeno y oxígeno fueron usados para estudiar las interacciones roca-agua y la recarga de aguas subterráneas en el área. Se colectaron 45 muestras de agua incluyendo agua superficial, agua subterránea cuaternaria y aguas subterráneas de los grupos jurásico Zhiluo (J2z) y Yan'an (J2y); en ellas se determinaron los iones principales y los isótopos estables (δD and δ18O). Nuestros resultados mostraron que el agua subterránea se originó por precipitación atmosférica que sufrió débil evaporación durante la infiltración. El agua en la zona estudiada tiene baja salinidad y es dominada por el tipo HCO3-Ca. Las interacciones dominantes agua-roca en el grupo jurásico Zhiluo (J2z) fueron la disolución de minerales silicatos, yeso y halita, e intercambio catiónico. Los resultados pueden ayudar en el manejo de los recursos hídricos y para prevenir la irrupción de agua subterránea en las minas de carbón.

抽象

理解中国西北干旱区柠条塔煤矿地下水补给及其机理对水资源管理和矿井水害防治至关重要。利用水化学和氢氧稳定同位素数据研究了该矿地下水水-岩作用和地下水补给过程。45个水样取自地表水、第四系水和侏罗统直罗组(J2z)与延安组(J2y)地下水。结果显示,地下水源自大气降水且经历了入渗期间的弱蒸发过程。研究区水盐度低,为典型HCO3-Ca型水。侏罗系直罗组(J2z)地下水主要水-岩作用为硅酸盐、石膏和岩盐溶解及阳离子交换。研究结果将有助于水资源管理和矿区地下水突水防治。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • André L, Franceschi M, Pouchan P, Atteia O (2005) Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. J Hydrol 305(1–4):40–62

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. A. A. Balkema Publishers, Leiden

    Book  Google Scholar 

  • Asmael NM, Huneau F, Garel E, Celle-Jeanton H, Le Coustumer P, Dupuy A, Hamid S (2015) Origin and recharge mechanisms of groundwater in the upper part of the Awaj River (Syria) based on hydrochemistry and environmental isotope techniques. Arab J Geosci 8(12):10521–10542

    Article  Google Scholar 

  • CCTEG (China Coal Technology & Engineering Group) Xi’an Research Institute (2012) The comprehensive hydrogeological reports of Ningtiaota Minefield. CCTEG Xi’an Research Institute, Xi’an (in Chinese)

  • Chen LW, Yin XX, Liu X (2013) Tracing of recharge sources of deep aquifers in the concealed type colliery of North China by hydrochemistry and isotopes. Sci Geogr Sinica 33(6):755–762

    Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Ding WL, Dai P, Zhu DW, Zhang YQ, He JH, Li A, Wang RY (2016) Fractures in continental shale reservoirs: a case study of the Upper Triassic strata in the SE Ordos Basin, Central China. Geol Mag 153(4):663–680

    Article  Google Scholar 

  • Edmunds WM, Guendouz AH, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18(6):805–822

    Article  Google Scholar 

  • Fisher RS, Mullican WF III (1997) Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 5(2):4–16

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. Adv Chem 67(10):222–242

    Article  Google Scholar 

  • Gastmans D, Chang HK, Hutcheon I (2010) Groundwater geochemical evolution in the northern portion of the Guarani Aquifer System (Brazil) and its relationship to diagenetic features. Appl Geochem 25(1):16–33

    Article  Google Scholar 

  • Gattacceca JC, Vallet-Coulomb C, Mayer A, Claude C, Radakovitch O, Conchetto E, Hamelin B (2009) Isotopic and geochemical characterization of salinization in the shallow aquifers of a reclaimed subsiding zone: the southern Venice Lagoon coastland. J Hydrol 378(1–2):46–61

    Article  Google Scholar 

  • Ghrefat HA, Batayneh A, Zaman H, Zumlot T, Elawadi E, Nazzal Y (2013) Major ion chemistry and weathering processes in the Midyan Basin, northwestern Saudi Arabia. Environ Monit Assess 185(10):8695–8705

    Article  Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170(3962):1088–1090

    Article  Google Scholar 

  • Gomo M, Vermeulen D (2014) Hydrogeochemical characteristics of a flooded underground coal mine groundwater system. J Afr Earth Sci 92:68–75

    Article  Google Scholar 

  • Han Y, Wang GC, Cravotta CA, Hu WY, Bian YY, Zhang ZW, Liu YY (2013) Hydrogeochemical evolution of Ordovician limestone groundwater in Yanzhou, North China. Hydrol Process 27(16):2247–2257

    Article  Google Scholar 

  • Hu W, Evans R (1997) The impacts of coal mining in Shenmu County, the Loess Plateau, China. Ambio 26(6):405–406

    Google Scholar 

  • Huang PH, Chen JS (2012) Recharge sources and hydrogeochemical evolution of groundwater in the coal-mining district of Jiaozuo, China. Hydrogeol J 20(4):739–754

    Article  Google Scholar 

  • Jiang XH, Gu XW, He HM (2010) The influence of coal mining on water resources in the Kuye River Basin. J Nat Resour 25(2):300–306 (in Chinese)

    Google Scholar 

  • Kendall C, McDonnell JJ (1998) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Kim K (2003) Long-term disturbance of ground water chemistry following well installation. Ground Water 41(6):780–789

    Article  Google Scholar 

  • Kim K, Rajmohan N, Kim HJ, Kim SH, Hwang GS, Yun ST, Gu B, Cho MJ, Lee SH (2005) Evaluation of geochemical processes affecting groundwater chemistry based on mass balance approach: a case study in Namwon, Korea. Geochem J 39(4):357–369

    Article  Google Scholar 

  • Li PY (2016) Groundwater quality in western China: challenges and paths forward for groundwater quality research in western China. Expos Health (London) 8(3):305–310

    Article  Google Scholar 

  • Li ZX, Han ML, Li JT, Yu JF, Lü DW, Liu HF (2008) On the analysis of the high-resolution sequence stratigraphy and coal accumulating law of jurassic in Ordos Basin. J Coal Sci Eng 14(1):85–91

    Article  Google Scholar 

  • Li PY, Qian H, Wu JH, Zhang YQ, Zhang HB (2013a) Major ion chemistry of shallow groundwater in the Dongsheng coalfield, Ordos Basin, China. Mine Water Environ 32(3):195–206

    Article  Google Scholar 

  • Li PY, Wu JH, Qian H (2013b) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69(7):2211–2225

    Article  Google Scholar 

  • Li PY, Qian H, Howard KWF, Wu JH (2015) Building a new and sustainable “Silk Road economic belt”. Environ Earth Sci 74(10):7267–7270

    Article  Google Scholar 

  • Marghade D, Malpe DB, Zade AB (2012) Major ion chemistry of shallow groundwater of a fast growing city of Central India. Environ Monit Assess 184(4):2405–2418

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical-weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287(5):401–428

    Article  Google Scholar 

  • Ministry of Land and Resources of the People’s Republic of China (1993) Quality standard for ground water vol GB/T 14848–93. Standard Press of China, Beijing

    Google Scholar 

  • Monjerezi M, Vogt RD, Aagaard P, Saka JDK (2011) Hydro-geochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: an integrated application of hierarchical cluster and principal component analyses. Appl Geochem 26(8):1399–1413

    Article  Google Scholar 

  • Moral F, Cruz-Sanjulian JJ, Olias M (2008) Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J Hydrol 360(1–4):281–296

    Article  Google Scholar 

  • Murkute YA (2014) Hydrogeochemical characterization and quality assessment of groundwater around Umrer coal mine area Nagpur District, Maharashtra, India. Environ Earth Sci 72(10):4059–4073

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans AGU 25(6):914–928

    Article  Google Scholar 

  • Shaanxi Coalfield Geology Bureau (1987) The detailed geology reports of coal mines in Shenmu. Shaanxi Coalfield Geology Bureau, Shaanxi (in Chinese)

    Google Scholar 

  • Shen ZL, Zhu WH, Zhong ZS (1986) Fundamental hydrogeochemistry. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Shvartsev SL, Wang YX (2006) Geochemistry of sodic waters in the Datong intermountain basin, Shanxi Province, Northwestern China. Geochem Int 44(10):1015–1026

    Article  Google Scholar 

  • Su H, Kang WD, Cao ZZ, Zhu HL (2013) Analysis on precipitation and runoff changing trend from 1954 to 2009 in Kuye River Basin. Ground Water 35(6):14–17 (in Chinese)

    Google Scholar 

  • Subrahmanyam K, Yadaiah P (2001) Assessment of the impact of industrial effluents on water quality in Patancheru and environs, Medak district, Andhra Pradesh, India. Hydrogeol J 9(3):297–312

    Article  Google Scholar 

  • Sun FQ, Hou GC, Dou Y, Fang CS, Jiang J, Zhang LZ (2009) Hydrogeochemistry evidence of groundwater circulation features in Ordos Cretaceous basin—a case study in Chabu well field. J Jilin U Earth Sci 39(2):269–275+293 (in Chinese)

    Google Scholar 

  • Wang GC, Duan Q, Chang YS (2000) Hydro-geochemical exploratory method in mine groundwater hazard control. Chin J Geol Hazard Control 11(1):36–40+43 (in Chinese)

    Google Scholar 

  • Wang YX, Guo QH, Su CL, Ma T (2006) Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J Hydrol 328(3–4):592–603

    Article  Google Scholar 

  • Wang SM, Fan LM, Huang QX, Yang ZY, Wang GZ, Shen T (2009) Study on coal mining for protecting ecological water level in the ecological fragile mining area. Metal Mine A1:715–720+725 (in Chinese)

    Google Scholar 

  • Wang L, Wei SP, Zhang QF, Wang QJ, Li SQ (2010) Isotopic characteristics of water within the soil–vegetation–atmosphere system in the Yushenfu mining area. J Chin Coal Soc 35(8):1347–1353 (in Chinese)

    Google Scholar 

  • Wang P, Yu JJ, Zhang YC, Liu CM (2013) Groundwater recharge and hydrogeochemical evolution in the Ejina basin, northwest China. J Hydrol 476:72–86

    Article  Google Scholar 

  • Wang XM, Jiao YQ, Wu LQ, Rong H, Wang XM, Song J (2014) Rare earth element geochemistry and fractionation in Jurassic coal from Dongsheng-Shenmu area, Ordos Basin. Fuel 136:233–239

    Article  Google Scholar 

  • Wu JH, Li PY, Qian H, Duan Z, Zhang XD (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: a case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982

    Article  Google Scholar 

  • Xue CJ, Chi GX, Xue W (2010) Interaction of two fluid systems in the formation of sandstone-hosted uranium deposits in the Ordos Basin: geochemical evidence and hydrodynamic modeling. J Geochem Explor 106(1–3):226–235

    Article  Google Scholar 

  • Yang H, Liu X, Yan X, Zhang H (2015a) Discovery and reservoir-forming geological characteristics of the Shenmu Gas Field in the Ordos Basin. Nat Gas Ind B 2(4):295–306

    Article  Google Scholar 

  • Yang MH, Li L, Zhou J, Jia HC, Sun X, Gong T, Ding C (2015b) Structural evolution and hydrocarbon potential of the upper Paleozoic Northern Ordos Basin, North China. Acta Geol Sin Engl 89(5):1636–1648

    Article  Google Scholar 

  • Yao JM, Xia F (2007) A study on hydrogeological condition and mining method in Ningtiaota Minefield (south limb), Shenmu-Fugu mining area. Coal Geol China 19(1):33–35+59 (in Chinese)

    Google Scholar 

  • Zhang FE, Liu WS (2002) A Numerical Simulation on the Influence of underground water flow regime caused by coal mining—a case study in Daliuta, Shenfu Ming area. J Safe Environ 2(4):30–33 (in Chinese)

    Google Scholar 

  • Zhou X, Jin XM, Liang SH, Shen Y, Zhang HM (2010) Specialized groundwater sciences. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 41272269 and 41672243. We thank Dr. Xiang Ding, Shao Hongqi, Han Qiang, Wang Xiaoming, Xie Guilin, and other staff from CCTEG Xi’an Research Institute and the Ningtiaota Coal Mining Administration for their assistance in field work. We gratefully acknowledge comments and helpful information from the editors and the four anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangcai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Wang, G., Liang, X. et al. Hydrochemical and Stable Isotope (δD and δ18O) Characteristics of Groundwater and Hydrogeochemical Processes in the Ningtiaota Coalfield, Northwest China. Mine Water Environ 37, 119–136 (2018). https://doi.org/10.1007/s10230-017-0477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0477-x

Keywords

Navigation