Skip to main content

Advertisement

Log in

The future of the western Baltic Sea: two possible scenarios

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Globally coupled climate models are generally capable of reproducing the observed trends in the globally averaged atmospheric temperature. However, the global models do not perform as well on regional scales. Here, we present results from four 100-year, high-resolution ocean model experiments (resolution less than 1 km) for the western Baltic Sea. The forcing is taken from a regional atmospheric model and a regional ocean model, imbedded into two global greenhouse gas emission scenarios, A1B and B1, for the period of 2000 to 2100 with each two realisations. Two control runs from 1960 to 2000 are used for validation. For both scenarios, the results show a warming with an increase of 0.5–2.5 K at the sea surface and 0.7–2.8 K below 40 m. The simulations further indicate a decrease in salinity by 1.5–2 practical salinity units. The increase in water temperature leads to a prolongation of heat waves based on present-day thresholds. This amounts to a doubling or even tripling of the heat wave duration. The simulations show a decrease in inflow events (barotropic/baroclinic), which will affect the deepwater generation and ventilation of the central Baltic Sea. The high spatial resolution allows us to diagnose the inflow events and the mechanism that will cause future changes. The reduction in barotropic inflow events correlates well with the increase in westerly winds. The changes in the baroclinic inflows can be consistently explained by the reduction of calm wind periods and thus a weakening of the necessary stratification in the western Baltic Sea and the Danish Straits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ådlandsvik B, Bentsen M (2007) Downscaling a twentieth century global climate simulation to the North Sea. Ocean Dyn 57(4):453–466

    Article  Google Scholar 

  • BACC (2008) Assessment of climate change for the Baltic sea basin. Regional climate studies. 1st edn. Springer, Berlin

  • Baker-Austin C, Trinanes JA, Taylor NGH, Hartnell R, Siitonen A (2012) Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Change. doi:10.1038/nclimate1628

  • Beckmann A, Döscher R (1997) A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J Phys Oceanogr 27(4):581–591

    Article  Google Scholar 

  • Burchard H (2009) Combined effects of wind, tide, and horizontal density gradients on stratification in estuaries and coastal seas. J Phys Oceanogr 39(9):2117–2136

    Article  Google Scholar 

  • Burchard H, Rennau H (2008) Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model 20(3):293–311

    Article  Google Scholar 

  • Burchard H, Lass HU, Mohrholz V, Umlauf L, Sellschopp J, Fiekas V, Bolding K, Arneborg L (2005) Dynamics of medium-intensity dense water plumes in the Arkona Basin, Western Baltic Sea. Ocean Dyn 55(5):391–402

    Article  Google Scholar 

  • Canuto VM, Howard A, Cheng Y, Dubovikov MS (2001) Ocean turbulence. Part I: one-point closure model. Momentum and heat vertical diffusivities. J Phys Oceanogr 31:1413–1426

    Article  Google Scholar 

  • Christensen JH, Christensen OB (2007) A summary of the prudence model projections of changes in European climate by the end of this century. Climate Change 81(0):7–30

    Article  Google Scholar 

  • Christensen JH, Machenhauer B, Jones RG, Schär C, Ruti PM, Castro M, Visconti G (1997) Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Climate Dyn 13:489–506

    Article  Google Scholar 

  • Clark RA, Fox CJ, Viner D, Livermore M (2003) North Sea cod and climate change—modelling the effects of temperature on population dynamics. Glob Change Biol 9(11):1669–1680

    Article  Google Scholar 

  • Conley DJ, Bjorck S, Bonsdorff E, Carstensen J, Destouni G, Gustafsson BG, Hietanen S, Kortekaas M, Kuosa H, Meier HEM, Muller-Karulis B, Nordberg K, Norkko A, Nurnberg G, Pitkanen H, Rabalais NN, Rosenberg R, Savchuk OP, Slomp CP, Voss M, Wulff F, Zillén L (2009) Hypoxia-related processes in the Baltic sea. Environ Sci Technol 43(10):3412–3420

    Article  Google Scholar 

  • Diaz DJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Annu Rev 33:245–303

    Google Scholar 

  • Ezer T, Mellor GL (2004) A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids. Ocean Model 6(3–4):379–403

    Article  Google Scholar 

  • Feistel R, Nausch G, Heene T, Piechura J, Hagen E (2004) Evidence for a warm water inflow into the Baltic proper in summer 2003. Oceanologia 46(4):581–598

    Google Scholar 

  • Feistel R, Nausch G, Wasmund N (2008) State and evolution of the Baltic Sea, chemistry 1952–2005: a detailed 50-year survey of meteorology and climate, physics, biology and marine environment. Wiley, New York

    Google Scholar 

  • Fennel W, Sturm M (1992) Dynamics of the western Baltic. J Mar Syst 3(1–2):183–205

    Article  Google Scholar 

  • Fischer H, Matthäus W (1996) The importance of the Drogden Sill in the sound for major Baltic inflows. J Mar Syst 9(3–4):137–157

    Article  Google Scholar 

  • Flinkman J, Aro E, Vuorinen I, Viitasalo M (1998) Changes in northern Baltic zooplankton and herring nutrition from 1980s to 1990s: top-down and bottom-up processes at work. Mar Ecol Prog Ser 165:127–136

    Article  Google Scholar 

  • Fu W, JL Høyer, She J (2011) Assessment of the three dimensional temperature and salinity observational networks in the Baltic Sea and North Sea. Ocean Sci 7(1):75–90

    Article  Google Scholar 

  • Gräwe U, Burchard H (2012) Storm surges in the western Baltic Sea: the present and a possible future. Climate Dyn 39(1):165–183

    Article  Google Scholar 

  • Griffies SM, Böning C, Bryan FO, Chassignet EP, Gerdes R, Hasumi H, Hirst A, Treguier AM, Webb D (2000) Developments in ocean climate modelling. Ocean Model 2(3–4):123–192

    Article  Google Scholar 

  • Griffies SM, Pacanowski RC, Schmidt M, Balaji V (2001) Tracer conservation with an explicit free surface method for z-coordinate ocean models. Mon Weather Rev 129(5):1081–1098

    Article  Google Scholar 

  • Haney RL (1991) On the pressure gradient force over steep topography in sigma coordinate ocean models. J Phys Oceanogr 21:610–619

    Article  Google Scholar 

  • Hofmeister R, Burchard H, Bolding K (2009) A three-dimensional model study on processes of stratification and de-stratification in the Limfjord. Cont Shelf Res 29(11–12):1515–1524

    Article  Google Scholar 

  • Hofmeister R, Burchard H, Beckers JM (2010) Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Model 33(1–2):70–86

    Article  Google Scholar 

  • Hofmeister R, Beckers JM, Burchard H (2011) Realistic modelling of the exceptional inflows into the central baltic sea in 2003 using terrain-following coordinates. Ocean Model 39(34):233–247

    Article  Google Scholar 

  • Hollweg HD, Böhm U, Fast I, Hennemuth B, Keuler K, Keup-Thiel E, Lautenschlager M, Legutke S, Radtke K, Rockel B, Schubert M, Will A, Woldt M, Wunram C (2008) Ensemble simulations over Europe with the Regional climate model CLM forced with IPCC AR4 global scenarios. Tech. Rep. 3 Model & Data, Max Planck Institute for Meteorology

  • Holt J, Wakelin S, Lowe J, Tinker J (2010) The potential impacts of climate change on the hydrography of the northwest European continental shelf. Prog Oceanogr 86(3–4):361–379

    Article  Google Scholar 

  • Hordoir R, Meier HEM (2010) Freshwater fluxes in the Baltic Sea: a model study. J Geophys Res 115(C8):C08,028

    Article  Google Scholar 

  • Hordoir R, Meier H (2012) Effect of climate change on the thermal stratification of the Baltic sea: a sensitivity experiment. Climate Dyn 38:1703–1713

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  • Isla JA, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Glob Change Biol 14(4):895–906

    Article  Google Scholar 

  • Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sánchez E, Schär C, Seneviratne S, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81(0):31–52

    Article  Google Scholar 

  • Jaeger EB, Anders I, Luthi D, Rockel B, Schar C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17

  • Jobling M (1996) Temperature and growth: modulation of growth rate via temperature change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jungclaus JH, Keenlyside N, Botzet M, Haak H, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19(16):3952–3972

    Article  Google Scholar 

  • Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  • Kjellström E (2004) Recent and future signatures of climate change in Europe. Ambio 33(4–5):193–198

    Google Scholar 

  • Kjellström E, Nikulin G, Hansson U, Strandberg G, Ullerstig A (2011) 21st century changes in the European climate: uncertainties derived from an ensemble of regional climate model simulations. Tellus A 63:24–40

    Article  Google Scholar 

  • Kondo J (1975) Air-sea bulk transfer coefficients in diabatic conditions. Bound-Layer Meteorol 9:91–112

    Article  Google Scholar 

  • Köster FW, Möllmann C, Neuenfeldt S, Vinther M, Kraus G, Voss R (2003) Fish stock development and environmental variability in the Central Baltic Sea. ICES Mar Sci Symp 219:294–306

    Google Scholar 

  • Landerer FW, Jungclaus JH, Marotzke J (2007) Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J Phys Oceanogr 37(2):296–312

    Article  Google Scholar 

  • Lass HU, Matthäus W (1996) On temporal wind variations forcing salt water inflows into the Baltic Sea. Tellus A 9:663–671

    Article  Google Scholar 

  • Lehmann A, Myrberg K (2008) Upwelling in the Baltic Sea—a review. J Mar Syst 74(1):3–12

    Article  Google Scholar 

  • Lintrup MJ, Jakobsen F (1999) The importance of Öresund and the Drogden Sill for Baltic inflow. J Mar Syst 18(4):345–354

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Margonski P, Hansson S, Tomczak MT, Grzebielec R (2010) Climate influence on Baltic cod, sprat, and herring stock-recruitment relationships. Prog Oceanogr 87(1–4):277–288

    Article  Google Scholar 

  • Matthäus W (2006) The history of investigation of salt water inflows into the Baltic Sea—from the early beginning to recent results. Meereswissenschaftliche Berichte 65:1–73

    Google Scholar 

  • Matthäus W, Franck H (1992) Characteristics of major Baltic inflows—a statistical analysis. Cont Shelf Res 12(12):1375–1400

    Article  Google Scholar 

  • Matthäus W, Schinke H (1994) Mean atmospheric circulation patterns associated with major Baltic inflows. Ocean Dyn 46:321–339

    Google Scholar 

  • Matthäus W, Nausch G, Lass H, Nagel K, Siegel H (1999) The Baltic Sea in 1998—characteristic features of the current stagnation period, nutrient conditions in the surface layer and exceptionally high deep water temperatures. Ocean Dyn 51:67–84

    Google Scholar 

  • Mattsson J (1996) Some comments on the barotropic flow through the Danish straits and the division of the flow between the belt sea and the Öresund. Tellus A 48(3):456–464

    Article  Google Scholar 

  • McClain EP, Pichel WG, Walton CC (1985) Comparative performance of AVHRR-based multichannel sea surface temperatures. J Geophys Res 90(C6):587–11

    Google Scholar 

  • Meier HEM (2006) Baltic Sea climate in the late twenty-first century: a dynamical downscaling approach using two global models and two emission scenarios. Clim Dyn 27:39–68

    Article  Google Scholar 

  • Meier HEM (2007) Modeling the pathways and ages of inflowing salt- and freshwater in the Baltic Sea. Estuar Coast Shelf Sci 74(4):610–627

    Article  Google Scholar 

  • Meier HEM, Kauker F (2003a) Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. J Geophys Res 108:3368

    Article  Google Scholar 

  • Meier HEM, Kauker F (2003b) Sensitivity of the Baltic Sea salinity to the freshwater supply. Clim Res 24:231–242

    Article  Google Scholar 

  • Meier HEM, Döscher R, Boman B, JPiechura (2004) The major Baltic inflow in January 2003 and preconditioning by smaller inflows in summer/autumn 2002: a model study. Oceanologia 46(4):557–579

    Google Scholar 

  • Meier HEM, Kjellström E, Graham LP (2006) Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophys Res Lett 33:L15,705

    Article  Google Scholar 

  • Meier HEM, Hoglund A, Doscher R, Andersson H, Loptien U, Kjellstrom E (2011) Quality assessment of atmospheric surface fields over the Baltic Sea from an ensemble of regional climate model simulations with respect to ocean dynamics. Oceanologia 53(1, SI):193–227

    Article  Google Scholar 

  • Melsom A, Lien VS, Budgell WP (2009) Using the Regional Ocean Modeling System (ROMS) to improve the ocean circulation from a GCM 20th century simulation. Ocean Dyn 59(6):969–981

    Article  Google Scholar 

  • Meyer M, Harff J, Gogina M, Barthel A (2008) Coastline changes of the Darss-Zingst Peninsula—a modelling approach. J Mar Syst 74:147–154

    Article  Google Scholar 

  • Nehring D, Matthäus W, Lass HU, Nausch G, Nagel K (1995) The Baltic Sea in 1995—beginning of a new stagnation period in its central deep waters and decreasing nutrient load in its surface layer. Ocean Dyn 47:319–327

    Google Scholar 

  • Neumann T (2010) Climate-change effects on the Baltic Sea ecosystem: a model study. J Mar Syst 81(3):213–224

    Article  Google Scholar 

  • Neumann T, Eilola K, Gustafsson B, Muller-Karulis B, Kuznetsov I, Meier HEM, Savchuk OP (2012) Extremes of temperature, oxygen and blooms in the Baltic Sea in a changing climate. AMBIO 41(6, SI):574–585

    Article  Google Scholar 

  • Olbert AI, Dabrowski T, Nash S, Hartnett M (2012) Regional modelling of the 21st century climate changes in the Irish Sea. Cont Shelf Res 41(0):48–60

    Article  Google Scholar 

  • Omstedt A, Pettersen C, Rodhe J, Winsor P (2004) Baltic Sea climate: 200 yr of data on air temperature, sea level variation, ice cover, and atmospheric circulation. Clim Res 25(3):205–216

    Article  Google Scholar 

  • Osiński R, Rak D, Walczowski W, Piechura J (2010) Baroclinic Rossby radius of deformation in the southern Baltic Sea. Oceanologia 52(3):417–429

    Article  Google Scholar 

  • Piani C, Haerter J, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1):187–192

    Article  Google Scholar 

  • Räisänen J, Hansson U, Ullerstig A, Döscher R, Graham L, Jones C, Meier HEM, Samuelsson P, Willén U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22:13–31

    Article  Google Scholar 

  • Reißmann JH (2005) On the representation of regional characteristics by hydrographic measurements at central stations in four deep basins of the Baltic Sea. Ocean Sci 2(4):363–398

    Google Scholar 

  • Reißmann JH, Burchard H, Feistel R, Hagen E, Lass HU, Mohrholz V, Nausch G, Umlauf L, Wieczorek G (2009) Vertical mixing in the Baltic Sea and consequences for eutrophication—a review. Prog Oceanogr 82(1):47–80

    Article  Google Scholar 

  • Rennau H, Burchard H (2009) Quantitative analysis of numerically induced mixing in a coastal model application. Ocean Dyn 59(5):671–687

    Article  Google Scholar 

  • Rennau H, Schimmels S, Burchard H (2012) On the effect of structure-induced resistance and mixing on inflows into the Baltic Sea: a numerical model study. Coast Eng 60(0):53–68

    Article  Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: model description

  • Schrum C (2001) Regionalization of climate change for the North Sea and Baltic Sea. Clim Res 18:31–37

    Article  Google Scholar 

  • Seguí PQ, Ribes A, Martin E, Habets F, Boé J (2010) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J Hydrol 383(1–2):111–124

    Article  Google Scholar 

  • Sellschopp J, Arneborg L, Knoll M, Fiekas V, Gerdes F, Burchard H, Lass HU, Mohrholz V, Umlauf L (2006) Direct observations of a medium-intensity inflow into the Baltic Sea. Cont Shelf Res 26(19):2393–2414

    Article  Google Scholar 

  • Siegel H, Seifert T, Schernewski G, Gerth M, Ohde T, Reißmann JH, Podsetchine V (2005). Ocean Dyn 55:47–66

    Article  Google Scholar 

  • Simpson JH, Hughes DG, Morris NCG (1977) The relation of seasonal stratification to tidal mixing on the continental shelf. In: Angel M (ed) A voyage of discovery. Deep-sea research (suppl.) Pergamon, Oxford, pp 327–340

    Google Scholar 

  • Stanev EV, Flemming BW, Bartholomä A, Staneva JV, Wolff JO (2007) Vertical circulation in shallow tidal inlets and back-barrier basins. Cont Shelf Res 27(6):798–831

    Article  Google Scholar 

  • Staneva JV, Stanev EV, Wolff JO, Badewien TH, Reuter R, Flemming BW, Bartholomä A, Bolding K (2009) Hydrodynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Cont Shelf Res 29(1):302–319

    Article  Google Scholar 

  • Umlauf L, Lemmin U (2005) Inter-basin exchange and mixing in hypolimnion of a large lake: the role of long internal waves. Limnol Oceanogr 50(5):1601–1611

    Article  Google Scholar 

  • Umlauf L, Burchard H, Bolding K (2006) General Ocean turbulence model. Source code documentation. Technical Report 63. Tech. rep. Baltic Sea Research Institute Warnemünde, Warnemünde, Germany

  • Umlauf L, Arneborg L, Burchard H, Fiekas V, Lass HU, Mohrholz V, Prandke H (2007) Transverse structure of turbulence in a rotating gravity current. Geophys Res Lett 34(8):L08601

    Article  Google Scholar 

  • van der Lee EM, Umlauf L (2011) Internal-wave mixing in the Baltic Sea: near-inertial waves in the absence of tides. J Geophys Res 116:C10016

    Article  Google Scholar 

  • van Roosmalen L, Christensen JH, Butts MB, Jensen KH, Refsgaard JC (2010) An intercomparison of regional climate model data for hydrological impact studies in Denmark. J Hydrol 380(3–4):406–419

    Article  Google Scholar 

  • Wang S, McGrath R, Hanafin J, Lynch P, Semmler T, Nolan P (2008) The impact of climate change on storm surges over Irish waters. Ocean Model 25(1–2):83–94

    Article  Google Scholar 

  • Weiss R (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res Oceanogr Abstr 17(4):721–735

    Article  Google Scholar 

  • Zhang W, Harff J, Schneider R, Wu C (2010) Development of a modelling methodology for simulation of long-term morphological evolution of the southern Baltic coast. Ocean Dyn 60(5):1085–1114

    Article  Google Scholar 

Download references

Acknowledgments

The Baltic Monitoring Programme (COMBINE) and the stations of the German Marine Monitoring Network (MARNET) in the Baltic Sea are conducted by the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) on behalf of the Bundesamt für Seeschifffahrt and Hydrographie, financed by the Bundesministerium für Verkehr, Bau-und Wohnungswesen. Supercomputing power was provided by “The North-German Supercomputing Alliance”. This work was supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) of Germany in the project RA:dOst through grant number 01LR0807B. We are grateful to Karsten Bolding (Asperup, Denmark) for the code maintenance of GETM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Gräwe.

Additional information

Responsible Editor: Aida Alvera-Azcárate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gräwe, U., Friedland, R. & Burchard, H. The future of the western Baltic Sea: two possible scenarios. Ocean Dynamics 63, 901–921 (2013). https://doi.org/10.1007/s10236-013-0634-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-013-0634-0

Keywords

Navigation