Skip to main content
Log in

Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone

  • Original paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A multiscale approach (periodic homogenization) is carried out to model osteon’s behaviour, and especially the coupled phenomena that govern its interstitial fluid movement. Actions of electro-osmotic and osmotic motions in addition to the classical Poiseuille flow are studied at the mesoscale of the canaliculus and within the micropores of the collagen-apatite matrix. Use of this fully coupled modelling leads to a comparison of these different effects. Limitation of a classical Darcian description of the fluid flow at the two scales is so studied. For each of these studies a special attention is given to the pore’s geometry influence and to their electrical and hydraulic properties

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arramon Y, Nauman E (2001) The intrinsic permeability of cancellous bone. In: Cowin S (eds). Bone mechanics handbook, chap 5, 2nd edn. CRC, Boca Raton, FL, pp 1–17

    Google Scholar 

  • Auriault J-L (1991) Heterogeneous medium. Is an equivalent macroscopic description possible?. Int J Eng Sci 29:785–795

    Article  MATH  Google Scholar 

  • Basset C, Becker R (1962) Generation of electrical potentials by bone in response to mechanical stress. Science 137:1063–1064

    Article  PubMed  Google Scholar 

  • Berreta D, Pollack S (1986) Ion concentration effects on the zeta potential of bone. J orthop Res 4:337–341

    Article  PubMed  Google Scholar 

  • Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  Google Scholar 

  • Buckwalter J, Glimcher M, Cooper R, Recker R (1995) Bone biology. Part i: Structure, blood supply, cells, matrix, and mineralization. JBone Joint Surg Am 77:1256–1275

    Google Scholar 

  • Cowin S (2001) Bone poroelasticity. In: Cowin S (eds). Bone mechanics handbook, chap23, 2nd edn. CRC, Boca Raton, FL, pp 1–31

    Google Scholar 

  • Cowin S (2002) Mechanosensation and fluid transport in living bone. JMusculoskel Neuron Interaction 2(3):256–260

    Google Scholar 

  • Cowin S, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28(11):1281–1297

    Article  PubMed  Google Scholar 

  • Donnan F (1924) The theory of membrane equilibrium. Chem Rev 1:73–90

    Article  Google Scholar 

  • Dormieux L, Barboux P, Coussy O, Dangla P (1995) A macroscopic model of the swelling phenomenon of a saturated clay. Eur J Mech A/Solids 14(6):981–1004

    MATH  Google Scholar 

  • Gu W, Lai W, Mow V (1998) A mixture theory for charged-hydrated soft tissues containing multi-electrolytes : passive transport and swelling behaviors. J Biomech Eng 120:169–180

    Article  PubMed  Google Scholar 

  • Gururaja S, Kim H, Swan C, Brand R, Lakes R (2005) Modeling deformation-induced fluid flow in cortical bone’s canalicular-lacunar system. Ann Biomed Eng 33:7–25

    Article  PubMed  Google Scholar 

  • Holmes J, Davies D, Meath W, Beebe RA (1953) Gas adsorption and surface structure of bone mineral. Biochemistry 3:2019–2024

    Article  Google Scholar 

  • Hornung U (1997) Homogenization and porous media. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Hunter R (1981) Zeta potential in colloid science: principles and applications. Academic, New York

    Google Scholar 

  • Hunter R (2001) Foundations of colloid science. Oxford University Press, New York

    Google Scholar 

  • Israelachvili J (1991) Intermolecular and surface forces. Academic, New-York

    Google Scholar 

  • Kang Y, Yang C, Huang X (2002) Electroosmotic flow in a capillary annulus with high zeta potentials. J Colloid Interf Sci 253:285–294

    Article  Google Scholar 

  • Kim Y, Kim J, Kim Y, Rho J (2002) Effects of organic matrix proteins on the interfacial structure at the bone-biocompatible nacre interface in vitro. Biomaterials 23:2089–2096

    Article  PubMed  Google Scholar 

  • Landau L, Lifshitz E (1960) Electrodynamics of continuous media. Pergamon Press, Oxford

    MATH  Google Scholar 

  • Lemaire T (2004) Couplages Tlectro-chimio-hydro-mTcaniques dans les milieux argileux. PhD thesis, Institut National Polytechnique de Lorraine, Nancy

  • Lemaire T, Moyne C, Stemmelen D, Murad M (2002) Electro-chemo-mechanical couplings in swelling clays derived by homogenization : electroviscous effects and onsager’s relations. In: Auriault J, Geindreau C, Royer P, Bloch J-F, Boutin C, Lewandowska J (eds) Poromechanics II, proceedings of the second Biot conference on poromechanics, Grenoble, France. Balkema Publishers, Lisse, pp 489–500

    Google Scholar 

  • Lyklema J (1995) Foundamentals of interface and colloid science. Academic, London

    Google Scholar 

  • Mak A, Zhang J (2001) Numerical simulation of streaming potentials due to deformation-induced hierarchical flows in cortical bone. J Biomech Eng 123(1):66–70

    Article  PubMed  Google Scholar 

  • Moyne C, Murad M (2002a) Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int J Solids and Structures 39(25):6159–6190

    Article  MATH  Google Scholar 

  • Moyne C, Murad M (2002b) Macroscopic behavior of swelling porous media derived from micromechanical analysis. Transport Porous Med 50:127–151

    Article  MathSciNet  Google Scholar 

  • Philip J, Wooding R (1970) Solution of the poisson-boltzmann equation about a cylindrical particle. J Chem Phys 52:953–959

    Article  MathSciNet  Google Scholar 

  • Piekarski K, Munro M (1977) Transport mechanism operating between blood supply and osteocytes in long bones. Nature 269(5623):80–82

    Article  PubMed  Google Scholar 

  • Pollack S (2001) Streaming potentials in bone. In: Cowin S (eds) Bone mechanics handbook, Chap 24, 2nd edition. CRC, Boca Raton, FL, pp 1–22

    Google Scholar 

  • Pollack S, Petrov N, Salzstein R, Brankov G, Blagoeva R (1984) An anatomical model for streaming potentials in osteons. J Biomech 17:627–636

    Article  PubMed  Google Scholar 

  • RTmond A, Naili S (2004) Cyclic loading of a transverse isotropic poroelastic cylinder: a model for the osteon. C R Mec 332(9):759–766

    Article  Google Scholar 

  • Samson E, Marchand J, Robert J-L, Bournazel J-P (1999) Modelling ion diffusion mechanisms in porous media. Int J Numer Meth Eng 46:2043–2060

    Article  MATH  MathSciNet  Google Scholar 

  • Sanchez-Palencia E (1980) Non-homogenous media and vibration theory. In: Lectures notes in Physics, vol 127. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Sasidhar V, Ruckenstein E (1981) Electrolyte osmosis through capillaries. J Colloid Interf Sci 8:439–457

    Article  Google Scholar 

  • Starkenbaum W, Pollack S, Korostoff E (1979) Microelectrode studies of stress generated potentials in four point bending of bone. J Biomed Mater Res 13:729–751

    Article  PubMed  Google Scholar 

  • Tsay R, Weinbaum S (1991) Viscous flow in a channel with periodic cross-bridging fibers: exact solutions and brinkman approximation. J Fluid Mech 226:125–148

    Article  MATH  Google Scholar 

  • Wang L, Fritton SP, Weinbaum S, Cowin S (2003) On bone adaptation due to venous stasis. J Biomech 36(10):1439–1451

    Article  PubMed  Google Scholar 

  • Weinbaum S, Cowin S, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360

    Article  PubMed  Google Scholar 

  • Yasuda I (1964) Piezoelectricity of living bone. J Kyoto Pref Med 53:2019–2024

    Google Scholar 

  • You L, Weinbaum S, Cowin S, Schaffler M (2004) Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec 278A(2):505–513

    Article  Google Scholar 

  • Zhang D, Weinbaum S, Cowin S (1998) On the calculation of bone pore water pressure due to mechanical loading. Int J Solids and Structures 35(34-35):4981–4997

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Naïli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemaire, T., Naïli, S. & Rémond, A. Multiscale analysis of the coupled effects governing the movement of interstitial fluid in cortical bone. Biomech Model Mechanobiol 5, 39–52 (2006). https://doi.org/10.1007/s10237-005-0009-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-005-0009-7

Keywords

Navigation