Skip to main content

Advertisement

Log in

Identification of in vivo material and geometric parameters of a human aorta: toward patient-specific modeling of abdominal aortic aneurysm

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Recent advances in computational modeling of vascular adaptations and the need for their extension to patient-specific modeling have introduced new challenges to the path toward abdominal aortic aneurysm modeling. First, the fundamental assumption in adaptation models, namely the existence of vascular homeostasis in normal vessels, is not easy to implement in a vessel model built from medical images. Second, subjecting the vessel wall model to the normal pressure often makes the configuration deviate from the original geometry obtained from medical images. To address those technical challenges, in this work, we propose a two-step optimization approach; first, we estimate constitutive parameters of a healthy human aorta intrinsic to the material by using biaxial test data and a weighted nonlinear least-squares parameter estimation method; second, we estimate the distributions of wall thickness and anisotropy using a 2-D parameterization of the vessel wall surface and a global approximation scheme integrated within an optimization routine. A direct search method is implemented to solve the optimization problem. The numerical optimization method results in a considerable improvement in both satisfying homeostatic condition and minimizing the deviation of geometry from the original shape based on in vivo images. Finally, the utility of the proposed technique for patient-specific modeling is demonstrated in a simulation of an abdominal aortic aneurysm enlargement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baek S, Rajagopal KR, Humphrey JD (2006) A theoretical model of enlarging intracranial fusiform aneurysms. J Biomech Eng 128(1): 142–149

    Article  Google Scholar 

  • Baek S, Valentín A, Humphrey JD (2007) Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations. Ann Biomed Eng 35(9): 1498–1509

    Article  Google Scholar 

  • Dorfmann A, Wilson C, Edgar ES, Peatte RA (2010) Evaluating patient-specific abdominal aortic aneurysm wall stress based on flow-induced loading. Biomech Model Mechanobiol 9(2): 127–139

    Article  Google Scholar 

  • Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198: 3583–3602

    Article  MathSciNet  MATH  Google Scholar 

  • Fillinger MF, Raghavan ML, Marra SP, Cronenwell JL, Kennedy FE (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36(3): 589–597

    Article  Google Scholar 

  • Gee MW, Reeps C, Eckstein HH, Wall WA (2009) Prestressing in finite deformation abdominal aortic aneurysm simulation. J Biomech 42: 1732–1739

    Article  Google Scholar 

  • Gee MW, Forster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Meth Biomed Engng 26: 52–72

    Article  MathSciNet  MATH  Google Scholar 

  • He CM, Roach MR (1994) The composition and mechanical properties of abdominal aortic aneurysms. J Vasc Surg 20(1): 6–13

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21: 441–463

    Article  MATH  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Google Scholar 

  • Humphrey JD (2008) Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem Biophys 50: 53–78

    Article  Google Scholar 

  • Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12: 407–430

    Article  MathSciNet  MATH  Google Scholar 

  • Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Ann Rev Biomed Eng 10: 1–26

    Article  Google Scholar 

  • Kassab GS (2008) Mechanical homeostasis of cardiovascular tissue. In: Artmann GM, Chien S (eds) Bioengineering in cell and tissue research. Springer, Berlin, pp 371–391

    Chapter  Google Scholar 

  • Kroon M, Holzapfel GA (2008a) Elastic properties of anisotropic vascular membranes examined by inverse analysis. Comput Methods Appl Mech Engrg 198: 3622–3632

    Article  MathSciNet  Google Scholar 

  • Kroon M, Holzapfel GA (2008b) Estimation of the distributions of anisotropic, elastic properties and wall stresses of saccular cerebral aneurysms by inverse analysis. Proc R Soc 464: 807–825

    Article  MathSciNet  MATH  Google Scholar 

  • Kroon M, Holzapfel GA (2009) A theoretical model for fibroblast-controlled growth of saccular cerebral aneurysms. J Theor Biol 257(1): 73–83

    Article  Google Scholar 

  • Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Optim 9(1): 112–147

    Article  MathSciNet  MATH  Google Scholar 

  • Lu J, Zhou X, Raghavan ML (2007) Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysms. J Biomech 40: 693–696

    Article  Google Scholar 

  • Lu J, Zhou X, Raghavan ML (2008) Inverse method of stress analysis for cerebral aneurysms. Biomech Model Mechanobiol 7: 477–486

    Article  Google Scholar 

  • Menashi S, Campa JS, Greenhalgh RM, Powell JT (1987) Collagen in abdominal aortic aneurysm: typing, content, and degradation. J Vasc Surg 6: 578–582

    Google Scholar 

  • Nelder JA, Mead R (1965) A simplex-method for function minimization. Comput J 7(4): 308–313

    MATH  Google Scholar 

  • Raghavan ML, Vorp DA, Federle M, Makaroun MS, Webster MW (2000) Wall stress distribution on three dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 31: 760–769

    Article  Google Scholar 

  • Raghavan ML, Ma B, Fillinger MF (2006) Non-invasive determination of zero-pressure geometry of arterial aneurysms. Ann Biomed Eng 34(9): 1414–1419

    Article  Google Scholar 

  • Rissland P, Alemu Y, Einav S, Ricotta J, Bluestein D (2009) Abdominal aortic aneurysm risk of rupture: patient-specific fsi simulations using anisotropic model. J Biomech Eng 131: 031,001

    Article  Google Scholar 

  • Sheidaei A, Hunley SC, Zeinali-Davarani S, Raguin LG, Baek S (2010) Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry. Med Eng Phys (in print). doi:10.1016/j.medengphy.2010.09.012

  • Speelman L, Bohra A, Boosman EMH, Schurink GHW, van de Vosse FN, Makaroun MS, Vorp DA (2007) Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng 129(1): 105–109

    Article  Google Scholar 

  • Taylor CA, Humphrey JD (2009) Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng 198: 3514–3523

    Article  MathSciNet  MATH  Google Scholar 

  • Torczon VJ (1989) Multi-directional search: a direct search algorithm for parallel machines. PhD thesis, Rice University

  • Vande Geest JP, Sacks MS, Vorp DA (2004) Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J Biomech Eng 126: 815–822

    Article  Google Scholar 

  • Vande Geest JP, Sacks MS, Vorp DA (2006) The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39: 1324–1334

    Article  Google Scholar 

  • Vorp DA, Vande Geest JP (2005) Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler Thromb Vasc Biol 25(8): 1558–1566

    Article  Google Scholar 

  • Watton PN, Hill NA (2009) Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech Model Mechanobiol 8(1): 25–42

    Article  Google Scholar 

  • Wright MH (1996) Direct search methods: once scorned, now respectable. In: Griffiths DF, Watson GA (eds) Numerical analysis 1995. Addison-Wesley, Reading, pp 191–208

    Google Scholar 

  • Zeinali-Davarani S, Choi J, Baek S (2009) On parameter estimation for biaxial mechanical behavior of arteries. J Biomech 42(4): 524–530

    Article  Google Scholar 

  • Zeinali-Davarani S, Sheidaei A, Baek S (2010) A finite element model of stress-mediated vascular adaptation: application to abdominal aortic aneurysms. Comput Methods Biomech Biomed Eng (in print). doi:10.1080/10255842.2010.495344

  • Zhou X, Lu J (2009) Estimation of vascular open configuration using finite element inverse elastostatic method. Eng Comput 25: 49–59

    Article  Google Scholar 

  • Zhou X, Raghavan ML, Harbaugh RE, Lu J (2010) Specific wall stress analysis in cerebral aneurysms using inverse shell model. Ann Biomed Eng 38(2): 478–489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seungik Baek.

Additional information

Dedicated to Professor K.R. Rajagopal on the occasion of his sixtieth birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeinali-Davarani, S., Raguin, L.G., Vorp, D.A. et al. Identification of in vivo material and geometric parameters of a human aorta: toward patient-specific modeling of abdominal aortic aneurysm. Biomech Model Mechanobiol 10, 689–699 (2011). https://doi.org/10.1007/s10237-010-0266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0266-y

Keywords

Navigation