Skip to main content
Log in

Mechanics of the mitral valve

A critical review, an in vivo parameter identification, and the effect of prestrain

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Alterations in mitral valve mechanics are classical indicators of valvular heart disease, such as mitral valve prolapse, mitral regurgitation, and mitral stenosis. Computational modeling is a powerful technique to quantify these alterations, to explore mitral valve physiology and pathology, and to classify the impact of novel treatment strategies. The selection of the appropriate constitutive model and the choice of its material parameters are paramount to the success of these models. However, the in vivo parameters values for these models are unknown. Here, we identify the in vivo material parameters for three common hyperelastic models for mitral valve tissue, an isotropic one and two anisotropic ones, using an inverse finite element approach. We demonstrate that the two anisotropic models provide an excellent fit to the in vivo data, with local displacement errors in the sub-millimeter range. In a complementary sensitivity analysis, we show that the identified parameter values are highly sensitive to prestrain, with some parameters varying up to four orders of magnitude. For the coupled anisotropic model, the stiffness varied from 119,021 kPa at 0 % prestrain via 36 kPa at 30 % prestrain to 9 kPa at 60 % prestrain. These results may, at least in part, explain the discrepancy between previously reported ex vivo and in vivo measurements of mitral leaflet stiffness. We believe that our study provides valuable guidelines for modeling mitral valve mechanics, selecting appropriate constitutive models, and choosing physiologically meaningful parameter values. Future studies will be necessary to experimentally and computationally investigate prestrain, to verify its existence, to quantify its magnitude, and to clarify its role in mitral valve mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abaqus 6.9. (2009) Analysis user’s manual. SIMULIA, Dassault Systèmes

  • Amini R, Eckert CE, Koomalsingh K, McGarvey J, Minakawa M, Gorman JH, Gorman RC, Sacks MS (2012) On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann Biomed Eng 40:1455–1467

    Article  Google Scholar 

  • Bothe W, Kuhl E, Kvitting JP, Rausch MK, Göktepe S, Swanson JC, Farahmandnia S, Ingels NB, Miller DC (2011) Rigid, complete annuloplasty rings increase anterior mitral valve leaflet strains in the normal beating ovine heart. Circulation 124:S81–S96

    Article  Google Scholar 

  • Bothe W, Rausch MK, Kvitting JP, Echtner DK, Walther M, Ingels NB, Kuhl E, Miller DC (2012) How do annuloplasty rings affect mitral annular strains in the normal beating ovine heart? Circulation 126:S231–S238

    Article  Google Scholar 

  • Carpentier A, Adams DH, Filsoufi F (2010) Carpentier’s reconstructive valve surgery. From valve analysis to valve reconstruction. Saunders Elsevier, Missouri

    Google Scholar 

  • Chaput M, Handschumacher MD, Guerrero JL, Holmvang G, Dal-Bianco JP, Sullivan S, Vlahakes GJ, Hung J, Levine RA (2009) Leducq Foundation MITRAL transatlantic network mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation 120:S99–S103

    Article  Google Scholar 

  • Cochran RP, Kunzelman KS, Chuong CJ, Sacks MS, Eberhart RC (1991) Nondestructive analysis of mitral valve collagen fiber orientation. Am Soc Artif Organs Trans 37:M447–M448

    Google Scholar 

  • Dal-Bianco JP, Aikawa E, Bischoff J, Guerrero JL, Handschumacher MD, Sullivan S, Johnson B, Titus JS, Iwamoto Y, Wylie-Sears J, Levine RA, Carpentier A (2009) Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation 120:334–342

    Article  Google Scholar 

  • Einstein DR, Reinhall P, Nicosia M, Cochran RP, Kunzelman K (2003) Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes. Comput Methods Biomech Biomed Eng 6:33–44

    Article  Google Scholar 

  • Einstein DR, Kunzelman KS, Reinhall PG, Cochran RP, Nicosia MA (2004) Haemodynamic determinants of the mitral valve closure sound: a finite element study. Med Biol Eng Comput 42:832–846

    Article  Google Scholar 

  • Famaey N, Vander Sloten J, Kuhl E (2013) A three-constituent damage model for arterial clamping in computer-assisted surgery. Biomech Model Mechanobiol. doi:10.1007/s10237-012-0386-7

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  • Göktepe S, Bothe W, Kvitting JP, Swanson J, Ingels NB, Miller DC, Kuhl E (2010) Anterior mitral leaflet curvature in the beating ovine heart. A case study using videofluoroscopic markers and subdivision surfaces. Biomech Model Mechanobiol 9:281–293

    Article  Google Scholar 

  • Grashow JS, Yoganathan AP, Sacks MS (2006) Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiological strain rates. Ann Biomed Eng 34:315–325

    Article  Google Scholar 

  • Grashow JS, Sacks MS, Liao J, Yoganathan AP (2006) Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann Biomed Eng 34:1509–1518

    Article  Google Scholar 

  • He Z, Ritchie J, Grashow JS, Sacks MS, Yoganathan AP (2005) In vitro dynamic strain behavior of the mitral valve posterior leaflet. J Biomech Eng 127:504–511

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for anterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Itoh A, Krishnamurthy G, Swanson J, Ennis D, Bothe W, Kuhl E, Karlsson M, Davis L, Miller DC, Ingels NB (2009) Active stiffening of mitral valve leaflets in the beating heart. Am J Physiol Heart Circ Physiol 296:H1766–H1773

    Article  Google Scholar 

  • Jassar AS, Brinster CJ, Vergnat M, Robb D, Eperjesi TJ, Pouch AM, Cheung AT, Weiss SJ, Acker MA, Gorman JH, Gorman RC, Jackson BM (2011) Quantitative mitral valve modeling using real-time three-dimensional echocardiography: technique and repeatability. Ann Thorac Surg 91:165–171

    Article  Google Scholar 

  • Krishnamurthy G, Ennis DB, Itoh A, Bothe W, Swanson JC, Karlsson M, Kuhl E, Miller DC, Ingels NB (2008) Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am J Physiol Heart Circ Physiol 295:H1141–H1149

    Article  Google Scholar 

  • Krishnamurthy G, Itoh A, Swanson JC, Bothe W, Karlsson M, Kuhl E, Miller DC, Ingels NB (2009) Regional stiffening of the mitral valve anterior leaflet in the beating heart. J Biomech 42:2697–2701

    Article  Google Scholar 

  • Krishnamurthy G, Itoh A, Bothe W, Swanson J, Kuhl E, Karlsson M, Miller DC, Ingels NB (2009) Stress-strain behavior of mitral valve leaflets in the beating ovine heart. J Biomech 42:1909–1916

    Article  Google Scholar 

  • Kunzelman KS, Cochran RP (1992) Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J Card Surg 7:71–78

    Article  Google Scholar 

  • Kunzelman KS, Cochran RP, Chuong C, Ring WS, Verrier ED, Eberhart RD (1993) Finite element analysis of the mitral valve. J Heart Valve Dis 2:326–340

    Google Scholar 

  • Kunzelman KS, Cochran RP, Murphree SS, Ring WS, Verrier ED, Eberhart RC (1993) Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour. J Heart Valve Dis 2:236–244

    Google Scholar 

  • Kunzelman KS, Reimink MS, Cochran RP (1997) Annular dilatation increases stress in the mitral valve and delays coaptation: a finite element computer model. Cardiovasc Surg 5:427–434

    Article  Google Scholar 

  • Kunzelman KS, Quick DW, Cochran RP (1998) Altered collagen concentration in mitral valve leaflets: biochemical and finite element analysis. Ann Thorac Surg 66:S198–205

    Article  Google Scholar 

  • Kvitting JP, Bothe W, Göktepe S, Rausch MK, Swanson JC, Kuhl E, Ingels NB, Miller DC (2010) Anterior mitral leaflet curvature during the cardiac cycle in the normal ovine heart. Circulation 122: 1683–1689

    Article  Google Scholar 

  • Liao J, Yang L, Grashow JS, Sacks MS (2007) The relation between collagen fibril kinematics and mechanical properties of the mitral valve anterior leaflet. J Biomech Eng 129:78–87

    Article  Google Scholar 

  • Libby P, Bonow RO, Man DL, Zipes DP (2008) Braunwald’s heart disease. A textbook of cardiovascular medicine. Saunders Elsevier, Philadelphia

    Google Scholar 

  • Maisano F, Redaelli A, Pennati G, Fumero R, Torracca L, Alfieri O (1999) The hemodynamic effects of double-orifice valve repair for mitral regurgitation: a 3D computational model. Eur J Cardiothorac Surg 15:419–425

    Article  Google Scholar 

  • Maisano F, Redaelli A, Soncini M, Votta E, Arcobaso L, Alfieri O (2005) An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis. Ann Thorac Surg 79:1268–1275

    Article  Google Scholar 

  • May-Newman K, Yin FC (1995) Biaxial mechanical behavior of excised porcine mitral valve leaflets. Am J Physiol 269:H1319–H1327

    Google Scholar 

  • May-Newman K, Yin FC (1998) A constitutive law for mitral valve tissue. J Biomech Eng 120:38–47

    Article  Google Scholar 

  • Mulholland DL, Gotlieb AI (1997) Cardiac valve interstitial cells: regulator of valve structure and function. Cardiovasc Pathol 6:167–174

    Article  Google Scholar 

  • Nordrum IS, Skallerud B (2012) Smooth muscle in the human mitral valve: extent and implications for dynamic modelling. Acta Pathologica, Microbiologica et Immunologica Scandinavica 120:484–494

    Article  Google Scholar 

  • Opie LH (2003) Heart physiology: from cell to circulation. Lippincott Williams & Wilkins, Pennsylvania

    Google Scholar 

  • Padala M, Hutchison RA, Croft LR, Jimenez JH, Gorman RC, Gorman JH, Sacks MS, Yoganathan AP (2009) Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann Thorac Surg 88:1499–1504

    Article  Google Scholar 

  • Pouch AM, Xu C, Yushkevich P, Jassar AS, Vergnat M, Gorman JH, Gorman RC, Jackson BM (2012) Semi-automated mitral valve morphometry and computational stress analysis using 3D ultrasound. J Biomech 45:903–907

    Article  Google Scholar 

  • Prot V, Skallerud B, Holzapfel GA (2007) Transversely isotropic membrane shells with application to mitral valve mechanics. Constitutive modeling and finite element implementation. Int J Numer Methods Eng 71:987–1008

    Article  MathSciNet  MATH  Google Scholar 

  • Prot V, Haaverstad R, Skallerud B (2009) Finite element analysis of the mitral apparatus: annulus shape effect and chordal force distribution. Biomech Model Mechanobiol 8:43–55

    Article  Google Scholar 

  • Prot V, Skallerud B (2009) Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers. Comput Mech 43:353–368

    Article  MATH  Google Scholar 

  • Rabbah JP, Saikrishnan N, Yoganathan AP (2013) A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics. Ann Biomed Eng. doi:10.1007/s10439-012-0651-z

  • Rausch MK, Kuhl E (2013) On the effect of prestrain and residual stress in thin biological membranes. submitted for publication

  • Rausch MK, Bothe W, Kvitting JPE, Göktepe S, Miller DC, Kuhl E (2011) In vivo dynamic strains of the ovine anterior mitral valve leaflet. J Biomech 44:1149–1157

    Article  Google Scholar 

  • Rausch MK, Bothe W, Kvitting JPE, Swanson JC, Ingels NB, Miller DC, Kuhl E (2011) Characterization of mitral valve annular dynamics in the beating heart. Ann Biomed Eng 39:1690–1702

    Article  Google Scholar 

  • Rausch MK, Bothe W, Kvitting JP, Swanson JC, Miller DC, Kuhl E (2012) Mitral valve annuloplasty—a quantitative clinical and mechanical comparison of different annuloplasty devices. Ann Biomed Eng 40:750–761

    Article  Google Scholar 

  • Rausch MK, Tibayan FA, Miller DC, Kuhl E (2012) Evidence of adaptive mitral leaflet growth. J Mech Behav Biomed Mater 15:208–217

    Article  Google Scholar 

  • Reimink MS, Kunzelman KS, Verrier ED, Cochran RP (1995) The effect of anterior chordal replacement on mitral valve function and stresses. A finite element study. Am Soc Artif Intern Organs 41:M754–762

    Article  Google Scholar 

  • Sacks MS, He Z, Baijens L, Wanant S, Shah P, Sugimoto H, Yoganathan AP (2002) Surface strains in the anterior leaflet of the functioning mitral valve. Ann Biomed Eng 30:78–87

    Article  Google Scholar 

  • Sacks MS, Enomoto Y, Graybill JR, Merryman WD, Zeeshan A, Yoganathan AP, Levy RJ, Gorman RC, Gorman JH (2006) In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann Thorac Surg 82:1369–1377

    Article  Google Scholar 

  • Sacks MS, Yoganathan AP (2007) Heart valve function: a biomechanical perspective. Philos Trans R Soc London B 362:1369–1391

    Article  Google Scholar 

  • Salgo IS, Gorman JH, Gorman RC, Jackson BM, Bowen FW, Plappert T, Sutton St John MG, Edmunds LH Jr (2002) Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106:711–717

    Article  Google Scholar 

  • Siefert AW, Jimenez JH, West DS, Koomalsingh KJ, Gorman RC, Gorman JH, Yoganathan AP (2012) In-vivo transducer to measure dynamic mitral annular forces. J Biomech 45:1514–1516

    Article  Google Scholar 

  • Skallerud B, Prot V, Nordrum IS (2011) Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech Model Mechanobiol 10:11–26

    Article  Google Scholar 

  • Taylor MT, Batten P, Brand NJ, Thomas PS, Yacoub MH (2003) The cardiac valve interstitial cell. Int J Biochem Cell Biol 35:113–118

    Article  Google Scholar 

  • van Vlimmeren MAA, Driessen-Mol A, Oomens CWJ, Baaijens FPT (2012) Passive and active contributions to generated force and retraction in heart valve tissue engineering. Biomech Model Mechanobiol 11:1015–1027

    Article  Google Scholar 

  • Votta E, Maisano F, Soncini M, Redaelli A, Montevecchi FM, Alfieri O (2002) 3-D computational analysis of the stress distribution on the leaflets after edge-to-edge repair of mitral regurgitation. J Heart Valve Dis 11:810–822

    Google Scholar 

  • Votta E, Maisano F, Bolling SF, Alfieri O, Montevecchi FM, Redaelli A (2007) The geoform disease-specific annuloplasty system. Ann Thorac Surg 84:92–101

    Article  Google Scholar 

  • Weinberg EJ, Kaazempur-Mofrad MR (2006) A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model. J Biomech 40:705–711

    Article  Google Scholar 

  • Xu C, Brinster CJ, Jassar AS, Vergnat M, Eperjesi TJ, Gorman RC, Gorman JH, Jackson BM (2010) A novel approach to in vivo mitral valve stress analysis. Am J Physiol Heart Circ Physiol 299: H1790–H1794

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Neil B. Ingels for designing the experimental study; John-Peder Escobar Kvitting and Julia C. Swanson for performing the surgical procedures; Paul Chang, Eleazar P. Briones, Lauren R. Davis, and Kathy N. Vo for assisting during the surgery; Maggie Brophy and Sigurd Hartnett for digitizing marker images; and George T. Daughters III for computing four-dimensional marker coordinates data biplane two-dimensional images. This study was supported by the Stanford University BioX Fellowship to Manuel Rausch, by the Deutsche Herzstiftung Research Grant S/06/07 to Wolfgang Bothe, by the US National Institutes of Health grants R01 HL29589 and R01 HL67025 to D. Craig Miller, and by the US National Science Foundation CAREER award CMMI 0952021 and INSPIRE grant 1233054 to Ellen Kuhl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Kuhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rausch, M.K., Famaey, N., Shultz, T.O. et al. Mechanics of the mitral valve. Biomech Model Mechanobiol 12, 1053–1071 (2013). https://doi.org/10.1007/s10237-012-0462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0462-z

Keywords

Navigation