Skip to main content
Log in

The stretching elasticity of biomembranes determines their line tension and bending rigidity

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this work, some implications of a recent model for the mechanical behavior of biological membranes (Deseri et al. in Continuum Mech Thermodyn 20(5):255–273, 2008) are exploited by means of a prototypical one-dimensional problem. We show that the knowledge of the membrane stretching elasticity permits to establish a precise connection among surface tension, bending rigidities and line tension during phase transition phenomena. For a specific choice of the stretching energy density, we evaluate these quantities in a membrane with coexistent fluid phases, showing a satisfactory comparison with the available experimental measurements. Finally, we determine the thickness profile inside the boundary layer where the order–disorder transition is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal A, Steigmann DJ (2008) Coexistent fluid-phase equilibria in biomembranes with bending elasticity. J Elast 93(1):63–80

    Article  MathSciNet  MATH  Google Scholar 

  • Agrawal A, Steigmann DJ (2009) Modeling protein-mediated morphology in biomembranes. Biomech Mod Mechanobiol 8(5):371–379

    Article  Google Scholar 

  • Akimov SA, Kuzmin PI, Zimmerberg J, Cohen FS, Chizmadzhev YA (2003) An elastic theory for line tension at a boundary separating two lipid monolayer regions of different thickness. J Electroanal Chem 564:13–18

    Article  Google Scholar 

  • Alberti G (2000) Variational models for phase transitions. An approach via \(\Gamma \)-convergence, published in L. Ambrosio, N. Dancer: calculus of variations and partial differential equations. In: Buttazzo G et al (eds) Topics on geometrical evolution problems and degree theory. Springer, Berlin, pp 95–114

  • Baesu E, Rudd RE, Belak J, McElfresh M (2004) Continuum modeling of cell membranes. Int J Nonlinear Mech 39:369–377

    Article  MATH  Google Scholar 

  • Baumgart T, Webb WW, Hess ST (2003) Imaging coexisting domains in biomembrane models coupling curvature and line tension. Nature 423:821–824

    Article  Google Scholar 

  • Baumgart T, Das S, Webb WW, Jenkins JT (2005) Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys J 89:1067–1080

    Article  Google Scholar 

  • Bermúdez H, Hammer DA, Discher DE (2004) Effect of bilayer thickness on membrane bending rigidity. Langmuir 20:540–543

    Article  Google Scholar 

  • Biscari P, Bisi F (2002) Membrane-mediated interactions of rod-like inclusions. Eur Phys J E 7:381–386

    Google Scholar 

  • Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26:61–80

    Article  Google Scholar 

  • Chen L, Johnson ML, Biltonen RL (2001) A macroscopic description of lipid bilayer phase transitions of mixed-chain phosphatidylcholines: chain-length and chain-asymmetry dependence. Biophys J 80:254–270

    Article  Google Scholar 

  • Choksi R, Morandotti M, Veneroni M (2012) Global minimizers for axisymmetric multiphase membranes. ESAIM: COCV. doi:10.1051/cocv/2012042

  • Chu N, Kucerka N, Liu Y, Tristram-Nagle S, Nagle JF (2005) Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys Rev E 71:041904

    Article  Google Scholar 

  • Coleman BD, Newman DC (1988) On the rheology of cold drawing. I. Elast Mater J Polym Sci Part B Polym Phys 26:1801–1822

    Google Scholar 

  • Das S, Tian A, Baumgart T (2008) Mechanical stability of micropipet-aspirated giant vesicles with fluid phase coexistence. J Phys Chem B 112:11625–11630

    Article  Google Scholar 

  • De Tommasi D, Puglisi G, Zurlo G (2011) Compression-induced failure of electroactive polymeric thin films. Appl Phys Lett 98:123507. doi:10.1063/1.3568885

    Google Scholar 

  • De Tommasi D, Puglisi G, Zurlo G (2012) Taut states of dielectric elastomer membranes. Int J Non-linear Mech 47:355–361. doi:10.1016/j.ijnonlinmec.2011.08.002

    Google Scholar 

  • De Tommasi D, Puglisi G, Zurlo G (2013a) Inhomogeneous spherical configurations of inflated membranes. Continuum Mech Thermodyn 25(2):197–206

    Google Scholar 

  • De Tommasi D, Puglisi G, Zurlo G (2013b) Electromechanical instability and oscillating deformations in electroactive polymer films. Appl Phys Lett 102:011903. doi:10.1063/1.4772956

    Google Scholar 

  • Deseri L, Owen DR (2003) Toward a field theory for elastic bodies undergoing disarrangements. J Elast 70(1):197–236. doi:10.1023/B:ELAS.0000005584.22658.b3

    Article  MathSciNet  MATH  Google Scholar 

  • Deseri L, Owen DR (2010) Submacroscopically stable equilibria of elastic bodies undergoing disarrangements and dissipation. Math Mech Solids 15(6):611–638

    Article  MathSciNet  MATH  Google Scholar 

  • Deseri L, Owen DR (2012) Moving interfaces that separate loose and compact phases of elastic aggregates: a mechanism for drastic reduction or increase in macroscopic deformation. Continuum Mech Thermodyn. doi:10.1007/s00161-012-0260-y

  • Deseri L, Piccioni MD, Zurlo G (2008) Derivation of a new free energy for biological membranes. Continuum Mech Thermodyn 20(5):255–273. doi:10.1007/s00161-008-0081-1

  • Deseri L, Healey TJ, Paroni R Material gamma-limits for the energetics of biological in-plane fluid films in preparation—private communication

  • Evans EA (1974) Bending resistance and chemically induced moments in membrane bilayers. Biophys J 14:923–931

    Article  Google Scholar 

  • Goldstein RE, Leibler S (1989) Structural phase transitions of interacting membranes. Phys Rev A 40(2):1025–1035

    Article  Google Scholar 

  • Hamm M, Kozlov MM (2000) Elastic energy of tilt and bending of fluid membranes. Eur Phys J E 3:323–335

    Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch [C] 28(11):693–703

    Google Scholar 

  • Honerkamp-Smith AR, Cicuta P, Collins MD, Veatch SL, den Nijs M, Schick M, Keller SL (2008) Line tensions, correlation lengths, and critical exponents in lipid membranes near critical points. Biophys J 95:236–246

    Google Scholar 

  • Hu M, Briguglio JJ, Deserno M (2012) Determining the Gaussian curvature modulus of lipid membranes in simulations. Biophys J 102:1403–1410

    Google Scholar 

  • Iglic A (ed) (2012) Advances in planar lipid bilayers and liposomes, 1st ed, vol 15. Academic Press, London

  • Jenkins JT (1977) Static equilibrium configurations of a model red blood cell. J Math Biol 4(2):149–169

    Article  MATH  Google Scholar 

  • Komura S, Shirotori H, Olmsted PD, Andelman D (2004) Lateral phase separation in mixtures of lipids and cholesterol. Europhys Lett 67(2):321

    Article  Google Scholar 

  • Lipowsky R (1992) Budding of membranes induced by intramembrane domains. J Phys II France 2:1825–1840

    Article  Google Scholar 

  • Maleki M, Seguin B, Fried E (2012) Kinematics, material symmetry, and energy densities for lipid bilayers with spontaneous curvature. Biomech Model Mechanobiol. doi:10.1007/s10237-012-0459-7

  • Norouzi D, Müller MM, Deserno M (2006) How to determine local elastic properties of lipid bilayer membranes from atomic-force-microscope measurements: a theoretical analysis. Phys Rev E 74:061914

    Article  Google Scholar 

  • Owicki JC, McConnell HM (1979) Theory of protein-lipid and protein-protein interactions in bilayer membranes. Proc Natl Acad Sci USA 76:4750–4754

    Article  Google Scholar 

  • Pan J, Tristram-Nagle S, Nagle JF (2009) Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. Phys Rev E Stat Nonlinear Soft Matter Phys 80:021931

    Google Scholar 

  • Puglisi G (2007) Nucleation and phase propagation in a multistable lattice with weak nonlocal interactions. Continuum Mech Thermodyn 19:299319

    Article  MathSciNet  Google Scholar 

  • Puglisi G, Zurlo G (2012) Electric field localizations in thin dielectric films with thickness non-uniformities. J Electrost 70:312–316. doi:10.1016/j.elstat.2012.03.012

    Google Scholar 

  • Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79:328–339

    Article  Google Scholar 

  • Reddy AS, Toledo Warshaviak D, Chachisvilis M (2012) Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochem Biophys Acta 1818:2271–2281

    Article  Google Scholar 

  • Sackmann E (1995) Physical basis of self-organization and function of membranes: physics of vesicles, vol 1, ch 5. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics. Elsevier, Amsterdam, pp 213–303

  • Semrau S, Idema T, Holtzer L, Schmict T, Storm C (2008) Accurate determination of elastic parameters for multicomponent membranes. PRL 100:088101

    Article  Google Scholar 

  • Siegel DP, Kozlov MM (2004) The Gaussian curvature elastic modulus of N-monomethylated dioleoylphosphatidylethanolamine: relevance to membrane fusion and lipid phase behavior. Biophys J 87:366–374

    Article  Google Scholar 

  • Trejo M, Ben Amar M (2011) Effective line tension and contact angles between membrane domains in biphasic vesicles. Eur Phys J E 34(8):2–14

    Google Scholar 

  • Triantafyllidis N, Bardenhagen S (1993) On higher order gradient continuum theories in nonlinear elasticity derivation from and comparison to the corresponding discrete models. J Elast 33:259–293

    Article  MathSciNet  MATH  Google Scholar 

  • Zurlo G (2006) Material and geometric phase transitions in biological membranes, Dissertation for the Fulfillment of the Doctorate of Philosophy in Structural Engineering, University of Pisa, etd-11142006-173408

Download references

Acknowledgments

G. Zurlo gratefully acknowledges the European Project INdAM-COFUND. L. Deseri thanks the University of Trento for partial financial support, the Department of Mathematical Sciences and Center for Nonlinear Analysis through the NSF Grant No. DMS-0635983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Zurlo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deseri, L., Zurlo, G. The stretching elasticity of biomembranes determines their line tension and bending rigidity. Biomech Model Mechanobiol 12, 1233–1242 (2013). https://doi.org/10.1007/s10237-013-0478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0478-z

Keywords

Navigation