Skip to main content
Log in

Dimensional reductions of a cardiac model for effective validation and calibration

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Complex 3D beating heart models are now available, but their complexity makes calibration and validation very difficult tasks. We thus propose a systematic approach of deriving simplified reduced-dimensional models, in “0D”—typically, to represent a cardiac cavity, or several coupled cavities—and in “1D”—to model elongated structures such as muscle samples or myocytes. We apply this approach with an earlier-proposed 3D cardiac model designed to capture length-dependence effects in contraction, which we here complement by an additional modeling component devised to represent length-dependent relaxation. We then present experimental data produced with rat papillary muscle samples when varying preload and afterload conditions, and we achieve some detailed validations of the 1D model with these data, including for the length-dependence effects that are accurately captured. Finally, when running simulations of the 0D model pre-calibrated with the 1D model parameters, we obtain pressure–volume indicators of the left ventricle in good agreement with some important features of cardiac physiology, including the so-called Frank–Starling mechanism, the End-Systolic Pressure–Volume Relationship, as well as varying elastance properties. This integrated multi-dimensional modeling approach thus sheds new light on the relations between the phenomena observed at different scales and at the local versus organ levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arts T, Bovendeerd PH, Prinzen FW, Reneman RS (1991) Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J 59(1):93–102

    Article  Google Scholar 

  • Arts T, Bovendeerd P, Delhaas T, Prinzen F (2003) Modeling the relation between cardiac pump function and myofiber mechanics. J Biomech 36(5):731–736

    Article  Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Bestel J, Clément F, Sorine M (2001) A biomechanical model of muscle contraction. In: Medical image computing and computer-assisted intervention-MICCAI Springer, pp 1159–1161

  • Bluhm WF, McCulloch AD, Lew WYW (1995) Active force in rabbit ventricular myocytes. J Biomech 28(9):1119–1122

    Article  Google Scholar 

  • Brutsaert DL, Claes VA (1974) Onset of mechanical activation of mammalian heart muscle in calcium- and strontium-containing solutions. Circ Res 35(3):345–357

    Article  Google Scholar 

  • Brutsaert DL, Housmans PR, Goethals MA (1980) Dual control of relaxation. Its role in the ventricular function in the mammalian heart. Circ Res 47(5):637–652

    Article  Google Scholar 

  • Campbell KS (2011) Impact of myocyte strain on cardiac myofilament activation. Pflug Arch Eur J Phy 462(1):3–14

    Article  Google Scholar 

  • Cazorla O, Le Guennec JY, White E (2000) Length-tension relationships of sub-epicardial and sub-endocardial single ventricular myocytes from rat and ferret hearts. J Mol Cell Cardiol 32(5):735–744

    Article  Google Scholar 

  • Chabiniok R, Moireau P, Lesault PF, Rahmouni A, Deux JF, Chapelle D (2011) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 11(5):609–630

    Article  Google Scholar 

  • Chapelle D, Bathe KJ (2011) The finite element analysis of shells-fundamentals, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Chapelle D, Le Tallec P, Moireau P, Sorine M (2012) An energy-preserving muscle tissue model: formulation and compatible discretizations. Int J Multiscale Com 10(2):189–211

    Article  Google Scholar 

  • Chapelle D, Fragu M, Mallet V, Moireau P (2013) Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart. Med Biol Eng Comput 51(11):1221–1233

    Google Scholar 

  • Claes VA, Brutsaert DL (1971) Infrared-emitting diode and optic fibers for underwater force measurement in heart muscle. J Appl Physiol 31(3):497–498

    Google Scholar 

  • De Clerck NM, Claes VA, Brutsaert DL (1977) Force velocity relations of single cardiac muscle cells: calcium dependency. J Gen Physiol 69(2):221–241

    Article  Google Scholar 

  • Costa K, Holmes J, McCulloch A (2001) Modelling cardiac mechanical properties in three dimensions. Philos Trans R Soc A 359(1783):1233–1250

    Article  MATH  Google Scholar 

  • Daniels M, Noble MI, ter Keurs HE, Wohlfart B (1984) Velocity of sarcomere shortening in rat cardiac muscle: relationship to force, sarcomere length, calcium and time. J Physiol 355:367–381

    Google Scholar 

  • de Tombe PP, ter Keurs HE (1990) Force and velocity of sarcomere shortening in trabeculae from rat heart. Effects of temperature. Circ Res 66(5):1239–1254

    Google Scholar 

  • Fabiato A, Fabiato F (1975) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256(5512):54–56

    Article  Google Scholar 

  • Fitzsimons DP, Patel JR, Moss RL (1998) Role of myosin heavy chain composition in kinetics of force development and relaxation in rat myocardium. J Physiol 513(1):171–183

    Article  Google Scholar 

  • Frank O (1895) Zur Dynamik des Herzmuskels. Z Biol 32:370– 447

    Google Scholar 

  • Fukuda N, Sasaki D, Ishiwata S, Kurihara S (2001) Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart. Circulation 104(14):1639–1645

    Article  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184(1):170–192

    Google Scholar 

  • Guerin T, Prost J, Joanny JF (2011) Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models. Eur Phys J 34(6):60

    Google Scholar 

  • Guyton AC, Hall JE (2011) Textbook of medical physiology, 12th edn. Elsevier, Amsterdam

    Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc Lond B Biol Sci 126(843):136–195

    Article  Google Scholar 

  • Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc A 367(1902):3445–3475

    Article  MATH  MathSciNet  Google Scholar 

  • Hunter PJ, McCulloch AD, ter Keurs HEDJ (1998) Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol 69(2–3):289–331

    Article  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Mol Biol 7:258–318

    Google Scholar 

  • Iribe G, Helmes M, Kohl P (2006) Force-length relations in isolated intact cardiomyocytes subjected to dynamic changes in mechanical load. Am J Physiol-Heart Circ Physiol 292(3):H1487–H1497

    Article  Google Scholar 

  • Izakov VY, Katsnelson LB, Blyakhman FA, Markhasin VS, Shklyar TF (1991) Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading. Circ Res 69(5):1171–1184

    Article  Google Scholar 

  • Julian FJ, Sollins MR (1975) Sarcomere length-tension relations in living rat papillary muscle. Circ Res 37(3):299–308

    Article  Google Scholar 

  • Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ, Noble MI (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58(6):755–768

    Article  Google Scholar 

  • Kerckhoffs RCP, Faris OP, Bovendeerd PHM, Prinzen FW, Smits K, McVeigh ER, Arts T (2005) Electromechanics of paced left ventricle simulated by straightforward mathematical model: comparison with experiments. Am J Physiol Heart Circ Physiol 289(5):H1889–97

    Article  Google Scholar 

  • Kloner R, Jennings R (2001) Consequences of brief ischemia: Stunning, preconditioning, and their clinical implications, part 1. Circulation 24(104):2981–2989

    Article  Google Scholar 

  • Koiter W (1965) On the nonlinear theory of thin elastic shells. Proc Kon Ned Akad Wetensch B69:1–54

    MathSciNet  Google Scholar 

  • Krueger JW, Pollack GH (1975) Myocardial sarcomere dynamics during isometric contraction. J Physiol 251(3):627–643

    Google Scholar 

  • Lecarpentier YC, Chuck LH, Housmans PR, De Clerck NM, Brutsaert DL (1979) Nature of load dependence of relaxation in cardiac muscle. Am J Physiol-Heart Circ Physiol 237(4):H455–H460

    Google Scholar 

  • Linari M, Bottinelli R, Pellegrino M, Reconditi M, Reggiani C, Lombardi V (2004) The mechanism of the force response to stretch in human skinned muscle fibres with different myosin isoforms (vol, 554, pg 335, 2004). J Physiol 555:851

    Article  Google Scholar 

  • Linari M, Caremani M, Piperio C, Brandt P, Lombardi V (2007) Stiffness and fraction of myosin motors responsible for active force in permeabilized muscle fibers from rabbit psoas. Biophys J 92:2476–2490

    Article  Google Scholar 

  • Linari M, Piazzesi G, Lombardi V (2009) The effect of myofilament compliance on kinetics of force generation by myosin motors in muscle. Biophys J 96(2):583–592

    Article  Google Scholar 

  • Linari M, Caremani M, Lombardi V (2010) A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle. Proc R Soc Lond B Bio 277(270):19–27

    Article  Google Scholar 

  • Linke WA, Popov VI, Pollack GH (1994) Passive and active tension in single cardiac myofibrils. Biophys J 67(2):782–792

    Article  Google Scholar 

  • Linke W, Fernandez J (2002) Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium. J Muscle Res Cell Motil 23(5–6):483–497

    Article  Google Scholar 

  • Lumens J, Delhaas T, Kirn B, Arts T (2009) Three-wall segment (TriSeg) model describing mechanics and hemodynamics of ventricular interaction. Ann Biomed Eng 37(11):2234–2255

    Article  Google Scholar 

  • Lymn R, Taylor E (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10(25):4617

    Article  Google Scholar 

  • Moireau P, Chapelle D, Le Tallec P (2008) Joint state and parameter estimation for distributed mechanical systems. Comput Method Appl M 197:659–677

    Article  MATH  Google Scholar 

  • Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau JF (2012) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1-2):1–18

    Google Scholar 

  • Moss RL, Fitzsimons DP (2002) Frank-Starling relationship—long on importance, short on mechanism. Circ Res 90(1):11–13

    Article  Google Scholar 

  • Nash M, Hunter P (2000) Computational mechanics of the heart—from tissue structure to ventricular function. J Elast 61(1–3):113–141

    Article  MATH  MathSciNet  Google Scholar 

  • Niederer SA, Hunter PJ, Smith NP (2006) A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys J 90(5):1697–1722

    Article  Google Scholar 

  • Niederer SA, Smith NP (2009) The role of the Frank-Starling Law in the transduction of cellular work to whole organ pump function: a computational modeling analysis. PLoS Comput Biol 5(4):e1000,371

    Article  Google Scholar 

  • Pacher P, Nagayama T, Mukhopadhyay P, Bátkai S, Kass DA (2008) Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat Protoc 3(9):1422–1434

    Article  Google Scholar 

  • Panerai RB (1980) A model of cardiac muscle mechanics and energetics. J Biomech 13:929–940

    Article  Google Scholar 

  • Parikh SS, Zou SZ, Tung L (1993) Contraction and relaxation of isolated cardiac myocytes of the frog under varying mechanical loads. Circ Res 72(2):297–311

    Article  Google Scholar 

  • Peskin CS (1975) Mathematical aspects of heart physiology. Courant Institute of Mathematical Sciences, New York University, New York

    MATH  Google Scholar 

  • Piazzesi G, Reconditi M, Linari M, Lucii L, Bianco P, Brunello E, Decostre V, Stewart A, Gore DB, Irving TC, Irving M, Lombardi V (2007) Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131(4):784–795

    Article  Google Scholar 

  • Sachse FB (2004) Computational cardiology: modeling of anatomy, electrophysiology, and mechanics. Springer, Berlin

    Book  Google Scholar 

  • Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84(28):1743–1759

    Article  MathSciNet  Google Scholar 

  • Schmid H, O’Callaghan P, Nash MP, Lin W, LeGrice IJ, Smaill BH, Young AA, Hunter PJ (2008) Myocardial material parameter estimation. Biomech Model Mechanobiol 7(3):161–173

    Article  Google Scholar 

  • Senzaki H, Chen CH, Kass DA (1996) Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for noninvasive application. Circulation 94:2497–2506

    Article  Google Scholar 

  • Shiels HA, White E (2008) The Frank-Starling mechanism in vertebrate cardiac myocytes. J Exp Biol 211(13):2005–2013

    Article  Google Scholar 

  • Smith N et al (2011) euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus 1(3):349–364

    Article  Google Scholar 

  • Sonnenblick EH (1962) Force-velocity relations in mammalian heart muscle. Am J Physiol 202(5):931–939

    Google Scholar 

  • Starling EH (1918) The Linacre lecture on the law of the heart given at Cambridge, 1915. Nature 101(2525):43–43

  • Suga H, Sagawa K, Shoukas AA (1973) Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32(3):314–322

    Article  Google Scholar 

  • Takeuchi M, Igarashi Y, Tomimoto S, Odake M, Hayashi T, Tsukamoto T, Hata K, Takaoka H, Fukuzaki H (1991) Single-beat estimation of the slope of the end-systolic pressure-volume relation in the human left ventricle. Circulation 83:202–212

    Article  Google Scholar 

  • ter Keurs HE, Rijnsburger WH, van Heuningen R, Nagelsmit MJ (1980) Tension development and sarcomere length in rat cardiac trabeculae. Evidence of length-dependent activation. Circ Res 46(5):703–714

    Article  Google Scholar 

  • Tortora GJ, Derrikson B (2009) Principles of anatomy and physiology, 12th edn. Wiley, NY

    Google Scholar 

  • Trayanova NA, Rice JJ (2011) Cardiac electromechanical models: from cell to organ. Front Physiol 2:43

    Article  Google Scholar 

  • Weiwad WK, Linke WA, Wussling MH (2000) Sarcomere length-tension relationship of rat cardiac myocytes at lengths greater than optimum. J Mol Cell Cardiol 32(2):247–259

    Article  Google Scholar 

  • Wong AYK (1972) Mechanics of cardiac muscle, based on Huxley’s model: simulation of active state and force-velocity relation. J Biomech 5(1):107–117

    Article  Google Scholar 

  • Zahalak GI, Ma S (1990) Muscle activation and contraction: constitutive relations based directly on cross-bridge kinetics. J Biomech Eng 112(1):52–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Caruel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruel, M., Chabiniok, R., Moireau, P. et al. Dimensional reductions of a cardiac model for effective validation and calibration. Biomech Model Mechanobiol 13, 897–914 (2014). https://doi.org/10.1007/s10237-013-0544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0544-6

Keywords

Navigation