Skip to main content
Log in

A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

During angiogenesis, sprouting microvessels interact with the extracellular matrix (ECM) by degrading and reorganizing the matrix, applying traction forces, and producing deformation. Morphometric features of the resulting microvascular network are affected by the interaction between the matrix and angiogenic microvessels. The objective of this study was to develop a continuous–discrete modeling approach to simulate mechanical interactions between growing neovessels and the deformation of the matrix in vitro. This was accomplished by coupling an existing angiogenesis growth model which uses properties of the ECM to regulate angiogenic growth with the nonlinear finite element software FEBio (www.febio.org). FEBio solves for the deformation and remodeling of the matrix caused by active stress generated by neovessel sprouts, and this deformation was used to update the ECM into the current configuration. After mesh resolution and parameter sensitivity studies, the model was used to accurately predict vascular alignment for various matrix boundary conditions. Alignment primarily arises passively as microvessels convect with the deformation of the matrix, but active alignment along collagen fibrils plays a role as well. Predictions of alignment were most sensitive to the range over which active stresses were applied and the viscoelastic time constant in the material model. The computational framework provides a flexible platform for interpreting in vitro investigations of vessel–matrix interactions, predicting new experiments, and simulating conditions that are outside current experimental capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Annex BH (2013) Therapeutic angiogenesis for critical limb ischaemia Nature reviews. Cardiology 10:387–396. doi:10.1038/nrcardio.2013.70

    Google Scholar 

  • Ateshian GA, Humphrey JD (2012) Continuum mixture models of biological growth and remodeling: past successes and future opportunities. Annu Rev Biomed Eng 14:97–111. doi:10.1146/annurev-bioeng-071910-124726

    Article  Google Scholar 

  • Ateshian GA, Maas S, Weiss JA (2013) Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J Biomech Eng 135:111001. doi:10.1115/1.4024823

    Article  Google Scholar 

  • Ateshian GA, Nims RJ, Maas S, Weiss JA (2014) Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules. Biomech Model Mechanobiol 13:1105–1120. doi:10.1007/s10237-014-0560-1

    Article  Google Scholar 

  • Ateshian GA, Rajan V, Chahine NO, Canal CE, Hung CT (2009) Modeling the matrix of articular cartilage using a continuous fiber angular distribution predicts many observed phenomena. J Biomech Eng 131:061003

    Article  Google Scholar 

  • Barocas VH, Moon AG, Tranquillo RT (1995) The fibroblast-populated collagen microsphere assay of cell traction force—Part 2: measurement of the cell traction parameter. J Biomech Eng 117:161–170

    Article  Google Scholar 

  • Barocas VH, Tranquillo RT (1997) An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J Biomech Eng 119:137–145

    Article  Google Scholar 

  • Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A 76:514–517

    Article  Google Scholar 

  • Bouhadir KH, Mooney DJ (2001) Promoting angiogenesis in engineered tissues. J Drug Target 9:397–406

    Article  Google Scholar 

  • Bowen RM (1976) Theory of mixtures. Academic Press, New York

    Google Scholar 

  • Carmeliet P (2004) Manipulating angiogenesis in medicine. J Intern Med 255:538–561. doi:10.1111/j.1365-2796.2003.01297.x

    Article  Google Scholar 

  • Chang CC et al (2012) Determinants of microvascular network topologies in implanted neovasculatures. Arterioscler Thromb Vasc Biol 32:5–14. doi:10.1161/ATVBAHA.111.238725

    Article  Google Scholar 

  • Chung AS, Ferrara N (2011) Developmental and pathological angiogenesis. Annu Rev Cell Dev Biol 27:563–584. doi:10.1146/annurev-cellbio-092910-154002

    Article  Google Scholar 

  • Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    Article  Google Scholar 

  • Edgar LT, Sibole SC, Underwood CJ, Guilkey JE, Weiss JA (2013) A computational model of in vitro angiogenesis based on extracellular matrix fibre orientation. Comput Methods Biomech Biomed Eng 16:790–801. doi:10.1080/10255842.2012.662678

    Article  Google Scholar 

  • Edgar LT, Underwood CJ, Guilkey JE, Hoying JB, Weiss JA (2014) Extracellular matrix density regulates the rate of neovessel growth and branching in sprouting angiogenesis. PLoS One 9:e85178. doi:10.1371/journal.pone.0085178

    Article  Google Scholar 

  • Egginton S, Hudlicka O, Brown MD, Walter H, Weiss JB, Bate A (1998) Capillary growth in relation to blood flow and performance in overloaded rat skeletal muscle. J Appl Physiol 85:2025–2032

    Google Scholar 

  • Ellis LM, Rosen L, Gordon MS (2006) Overview of anti-VEGF therapy and angiogenesis. Part 1: angiogenesis inhibition in solid tumor malignancies. Clin Adv Hematol Oncol 4:suppl1–suppl10; quiz 11–12

  • Folkman J (1997) Angiogenesis and angiogenesis inhibition: an overview. EXS 79:1–8

    Google Scholar 

  • Hoying JB, Boswell CA, Williams SK (1996) Angiogenic potential of microvessel fragments established in three-dimensional collagen gels In vitro cellular & developmental biology. Animal 32:409–419

    Google Scholar 

  • Ingber DE (2002) Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ Res 91:877–887

    Article  Google Scholar 

  • Jaffe RB (2000) Importance of angiogenesis in reproductive physiology. Semin Perinatol 24:79–81

    Article  Google Scholar 

  • Kirkpatrick ND, Andreou S, Hoying JB, Utzinger U (2007) Live imaging of collagen remodeling during angiogenesis. Am J Physiol Heart Circu Physiol 292:H3198–3206. doi:10.1152/ajpheart.01234.2006

    Article  Google Scholar 

  • Krishnan L, Hoying JB, Nguyen H, Song H, Weiss JA (2007) Interaction of angiogenic microvessels with the extracellular matrix. Am J Phys Heart Circul Physiol 293:H3650–3658. doi:10.1152/ajpheart.00772.2007

    Article  Google Scholar 

  • Krishnan L, Underwood CJ, Maas S, Ellis BJ, Kode TC, Hoying JB, Weiss JA (2008) Effect of mechanical boundary conditions on orientation of angiogenic microvessels. Cardiovasc Res 78:324–332. doi:10.1093/cvr/cvn055

    Article  Google Scholar 

  • Krishnan L, Weiss JA, Wessman MD, Hoying JB (2004) Design and application of a test system for viscoelastic characterization of collagen gels. Tissue Eng 10:241–252. doi:10.1089/107632704322791880

    Article  Google Scholar 

  • Maas SA (2007–2011) WinFiber3D. Musculoskeletal Research Laboratories, University of Utah, Salt Lake City, UT, USA (http://mrl.sci.utah.edu/software/winfiber3d)

  • Maas SA, Ellis BJ, Ateshian GA, Weiss JA (2012) FEBio: finite elements for biomechanics. J Biomech Eng 134:011005. doi:10.1115/1.4005694

    Article  Google Scholar 

  • Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63:300–311. doi:10.1016/j.addr.2011.03.004

    Article  Google Scholar 

  • Nunes SS, Krishnan L, Gerard CS, Dale JR, Maddie MA, Benton RL, Hoying JB (2010) Angiogenic potential of microvessel fragments is independent of the tissue of origin and can be influenced by the cellular composition of the implants. Microcirculation 17:557–567. doi:10.1111/j.1549-8719.2010.00052.x

    Google Scholar 

  • Peirce SM (2008) Computational and mathematical modeling of angiogenesis. Microcirculation 15:739–751. doi:10.1080/10739680802220331

    Article  Google Scholar 

  • Peirce SM, Skalak TC (2003) Microvascular remodeling: a complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 10:99–111. doi:10.1038/sj.mn.7800172

    Article  Google Scholar 

  • Phelps EA, Garcia AJ (2010) Engineering more than a cell: vascularization strategies in tissue engineering. Curr Opin Biotechnol 21:704–709. doi:10.1016/j.copbio.2010.06.005

    Article  Google Scholar 

  • Pries AR, Secomb TW (2005) Control of blood vessel structure: insights from theoretical models. Am J Physiol Heart Circ Physiol 288:H1010–1015. doi:10.1152/ajpheart.00752.2004

    Article  Google Scholar 

  • Qutub AA, Mac Gabhann F, Karagiannis ED, Vempati P, Popel AS (2009) Multiscale models of angiogenesis. IEEE Eng Med Biol Mag 28:14–31. doi:10.1109/MEMB.2009.931791

    Article  Google Scholar 

  • Rausch MK, Dam A, Goktepe S, Abilez OJ, Kuhl E (2011) Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol 10:799–811. doi:10.1007/s10237-010-0275-x

    Article  Google Scholar 

  • Richter SJ, Richter C (2012) A method for determining equivalence in industrial applications. Qual Eng 14:375–380

    Article  Google Scholar 

  • Roeder BA, Kokini K, Voytik-Harbin SL (2009) Fibril microstructure affects strain transmission within collagen extracellular matrices. J Biomech Eng 131:031004. doi:10.1115/1.3005331

    Article  Google Scholar 

  • Shiu YT, Weiss JA, Hoying JB, Iwamoto MN, Joung IS, Quam CT (2005) The role of mechanical stresses in angiogenesis. Crit Rev Biomed Eng 33:431–510

    Article  Google Scholar 

  • Underwood CJ, Edgar LT, Hoying JB, Weiss JA (2014) Cell-generated traction forces and the resulting matrix deformation modulate microvascular alignment and growth during angiogenesis. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00995.2013

  • van Nieuw Amerongen GP, Koolwijk P, Versteilen A, van Hinsbergh VW (2003) Involvement of RhoA/Rho kinase signaling in VEGF-induced endothelial cell migration and angiogenesis in vitro. Arterioscler Thromb Vasc Biol 23:211–217

    Article  Google Scholar 

  • van Oers RF, Rens EG, LaValley DJ, Reinhart-King CA, Merks RM (2014) Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput Biol 10:e1003774. doi:10.1371/journal.pcbi.1003774

    Article  Google Scholar 

  • Vernon RB, Sage EH (1999) A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvascu Res 57:118–133. doi:10.1006/mvre.1998.2122

    Article  Google Scholar 

  • Yang MT, Reich DH, Chen CS (2011) Measurement and analysis of traction force dynamics in response to vasoactive agonists. Integr Biol quant Biosci Nano Macro 3:663–674. doi:10.1039/c0ib00156b

    Google Scholar 

Download references

Acknowledgments

Financial support from National Institutes of Health #R01HL077683, R01GM083925 and R01EB015133 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Weiss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 195 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edgar, L.T., Maas, S.A., Guilkey, J.E. et al. A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro. Biomech Model Mechanobiol 14, 767–782 (2015). https://doi.org/10.1007/s10237-014-0635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0635-z

Keywords

Navigation