Skip to main content
Log in

Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen (\(\hbox {O}_2\)) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, \(\hbox {O}_2\) is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the \(\hbox {O}_2\) distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the \(\hbox {O}_2\) profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the \(\hbox {O}_2\) tension at the level of the retinal ganglion cells; and (3) arterial \(\hbox {O}_2\) permeability has a strong influence on the \(\hbox {O}_2\) saturation in the retinal arterioles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACV:

Artero-capillary-venous

CRA:

Central retinal artery

CRV:

Central retinal vein

DLA:

Diffusion-limited aggregation

FEM:

Finite element method

FCM:

Fully coupled model

IOP:

Intraocular pressure

\(\hbox {O}_2\) :

Oxygen

PDE:

Partial differential equation

RBC:

Red blood cell

VTN:

Vascular tree network

1/2/3D:

One/two/three-dimensional

References

  • Alamouti B, Funk J (2003) Retinal thickness decreases with age: an OCT study. Br J Ophthalmol 87(7):899–901

    Article  Google Scholar 

  • Alder VA, Cringle SJ (1990) Vitreal and retinal oxygenation. Graefes Arch Clin Exp Ophthalmol 228(1):151–157

    Article  Google Scholar 

  • Anand-Aptea B, Hollyfielda JG (2010) Developmental anatomy of the retinal and choroidal vasculature. Elsevier, Cleveland

    Book  Google Scholar 

  • Arai R, Kimura I, Imamura Y, Shinoda K, Matsumoto CS, Seki K, Ishida M, Murakami A, Mizota A (2014) Photoreceptor inner and outer segment layer thickness in multiple evanescent white dot syndrome. Graefes Arch Clin Exp Ophthalmol 252(10):1645–1651

    Article  Google Scholar 

  • Arciero J, Pickrell A, Siesky BA, Harris A (2012) Theoretical analysis of myogenic and metabolic responses in retinal blood flow autoregulation. Annual meeting of the association for research in vision and ophthalmology, program 6847, Abstract D1177

  • Arciero J, Harris A, Siesky B, Amireskandari A, Gershuny V, Pickrell A, Guidoboni G (2013) Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation. Invest Ophthalmol Vis Sci 54(8):5584–5593

    Article  Google Scholar 

  • Avtar R, Tandon D (2008) Mathematical modelling of intraretinal oxygen partial pressure. Trop J Pharm Res 7(4):1107–1116

    Article  Google Scholar 

  • Bank RE, Buergler JF, Fichtner W, Smith RK (1990) Some upwinding techniques for finite element approximations of convection-diffusion equations. Numer Math 58(1):185–202

    Article  MathSciNet  MATH  Google Scholar 

  • Bawazir A, Gharebaghi R, Hussein A, Hitam WHW (2011) Non-arteritic anterior ischaemic optic neuropathy in Malaysia: a 5 years review. Int J Ophthalmol 4(3):272–274

    Google Scholar 

  • Beach JM, Schwenzer KJ, Srinnivas S, Kim D, Tiedeman JS (1999) Oxymetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation. J Appl Physiol 86(2):748–758

    Google Scholar 

  • Beard DA, Bassingthwaighte JB (2001) Mathematical modelling of intraretinal oxygen partial pressure. Ann Biomed Eng 29(4):298–310

    Article  Google Scholar 

  • Becker H, Polo O, McNamara S, Berthon-Jones M, Sullivan C (1996) Effect of different levels of hyperoxia on breathing in healthy subjects. J Appl Physiol 81(4):1683–1690

    Google Scholar 

  • Bhargava M, Ikram M, Wong T (2012) How does hypertension affect your eyes? J Hum Hypertens 26(2):71–83

    Article  Google Scholar 

  • Braun RD, Linsenmeier RA, Goldstick TK (1995) Oxygen consumption in the inner and outer retina of the cat. Invest Ophthalmol Vis Sci 36(3):542–554

    Google Scholar 

  • Čanić S, Kim EH (2003) Mathematical analysis of the quasilinear effects in a hyperbolic model blood flow through compliant axi-symmetric vessels. Math Method Appl Sci 26(14):1161–1186, ISSN 1099-1476. doi: 10.1002/mma.407

  • Caprioli J, Coleman AL (2010) Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol 149(5):704–712

    Article  Google Scholar 

  • Causin P, Malgaroli F, Zorzan F (2014) A mechano-physiological model of metabolic autoregulation in eye retinal microcirculation. In: Zannoli R, Corazza I, Stagni R (eds) Proceedings of ICMMB14 (CD-ROM)

  • Charlson M, de Moraes C, Link A, Wells M, Harmon G, Peterson J, Ritch R, Liebmann J (2014) Nocturnal systemic hypotension increases the risk of glaucoma progression. Ophthalmology 121(10):2004–2012

    Article  Google Scholar 

  • Cicco G, Giorgino F, Cicco S (2011) Wound healing in diabetes: hemoreological and microcirculatory aspects. In: Oxygen transport to tissue XXXII. Springer, pp 263–269

  • Connolly D, Hosking S (2008) Oxygenation and gender effects on photopic frequency-doubled contrast sensitivity. Vision Res 48(2):281–288

    Article  Google Scholar 

  • Costa V, Harris A, Anderson D, Stodtmeister R, Cremasco F, Kergoat H, Lovasik J, Stalmans I, Zeitz O, Lanzl I, Gugleta K, Schmetterer L (2014) Ocular perfusion pressure in glaucoma. Acta Ophthalmol 92(4):e252–e266

    Article  Google Scholar 

  • Cringle SJ, Yu DY (2002) A multi-layer model of retinal oxygen supply and consumption helps explain the mutated rise in inner retinal \(P_{O_2}\) during systemic hyperoxia. Comp Biochem Physiol Part A Mol Integr Physiol 132(1):61–66

    Article  Google Scholar 

  • D’Angelo C (2007) Multiscale modelling of metabolism and transport phenomena in living tissues. Dissertation, EPFL. http://infoscience.epfl.ch/

  • Dash RK, Bassingthwaighte JB (2010) Erratum to: Blood HBO2 and HBCO2 dissociation curves at varied O2, CO2, pH, 2, 3-DPG and temperature levels. Ann Biomed Eng 38(4):1683–1701

    Article  Google Scholar 

  • Dautrabande L, Haldane J (1921) The effect of respiration of oxygen on breathing and circulation. J Physiol 55:296–299

    Article  Google Scholar 

  • Deokule S, Weinreb R (2008) Relationships among systemic blood pressure, intraocular pressure, and open-angle glaucoma. Can J Ophthalmol 43(3):302–307

    Article  Google Scholar 

  • Eperon G, Johnson M, David N (1975) The effect of arterial \(\text{ PO }_2\) on relative retinal blood flow in monkeys. Invest Ophthalmol 14:342–352

    Google Scholar 

  • Erbertseder K, Reichold J, Flemisch B, Jenny P, Helmig R (2012) A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS One 7(3):e31966

    Article  Google Scholar 

  • Family F, Masters R, Platt D (1989) Fractal pattern formation in human retinal vessels. Physica D 38(1–3):98–103

    Article  Google Scholar 

  • Formaggia L, Quarteroni A, Veneziani A (eds) (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system, Springer, Italy

  • Ganesan P, He S, Xu H (2010a) Development of an image-based network model of retinal vasculature. Ann Biomed Eng 38:1566–1585

    Article  Google Scholar 

  • Ganesan P, He S, Xu H (2010b) Analysis of retinal circulation using an image-based network model of retinal vasculature. Microvasc Res 80(1):99–109

    Article  Google Scholar 

  • Ganfield R, Nair P, Whalen W (1970) Mass transfer, storage, and utilization of O2 in cat cerebral cortex. An J Physiol 219(3):814–821

    Google Scholar 

  • Geirsdottir A, Palsson O, Hardarson SH, Olafsdottir OB, Kristjansdottir JV, Stefánsson E (2012) Retinal vessel oxygen saturation in healthy individuals. Invest Ophthalmol Vis Sci 53(9):5433–5442

    Article  Google Scholar 

  • George A, Liu J (1981) The fluid mechanics of large blood vessels. Cambridge University Press, Cambridge

    Google Scholar 

  • Gerber AL, Harris A, Siesky B, Lee E, Schaab TJ, Huck A, Amireskandari A (2014) Vascular dysfunction in diabetes and glaucoma: a complex relationship reviewed. J Glaucoma. doi:10.1097/IJG.0000000000000137

  • Goldman D, Popel AS (2000) A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J Theor Biol 206(2):181–194

    Article  Google Scholar 

  • Grunwald JE, Riva CE, Baine J, Brucker AJ (1992) Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Invest Ophthalmol Vis Sci 33(2):356–363

    Google Scholar 

  • Gugleta K, Zawinka C, Rickenbacher I, Kochkorov A, Katamay R, Flammer J, Orgul S (2006) Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci 47(9):4034–4041

    Article  Google Scholar 

  • Guidoboni G, Harris A, Carichino L, Arieli Y, Siesky BA (2014a) Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model. Math Biosci Eng 11(3):523–546

    Article  MathSciNet  MATH  Google Scholar 

  • Guidoboni G, Harris A, Cassani S, Arciero J, Siesky B, Amireskandari A, Tobe L, Egan P, Januleviciene I, Park J (2014b) Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci 55(7):4105–4118

  • Hammer M, Heller T, Jentsch S, Dawczynski J, Schweitzer D, Peters S, Schmidtke K, Muller U (2012) Retinal vessel oxygen saturation under flicker light stimulation in patients with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 53(7):4063–4068

    Article  Google Scholar 

  • Hardarson S, Stefánsson E (2012) Retinal oxygen saturation is altered in diabetic retinopathy. Br J Ophthalmol 96:560–563

    Article  Google Scholar 

  • Harris A, Jonescu-Cuypers C, Kagemann L, Ciulla T, Krieglstein G (2003) Atlas of ocular blood flow: vascular anatomy, pathophysiology, and metabolism. Butterworth-Heinemann (Elsevier), Philadelphia

    Google Scholar 

  • Haugh L, Linsenmeier R, Goldstick TK (1989) Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination. Ann Biomed Eng 18(1):19–36

    Article  Google Scholar 

  • Hayreh S (2008) Role of retinal hypoxia in diabetic macular edema: a new concept. Graefes Arch Clin Exp Ophthalmol 246(3):356–361

    Article  Google Scholar 

  • He Z, Vingrys A, Armitage J, Bui B (2011) The role of blood pressure in glaucoma. Clin Exp Optom 94(2):133–149

    Article  Google Scholar 

  • Hellums J, Nair PK, Huang N, Ohshima N (1996) Simulation of intraluminal gas transport process in the microcirculation. Ann Biomed Eng 24:1–24

    Article  Google Scholar 

  • Hickam J, Frayser R (1966) Studies of the retinal circulation in man: observation on vessel diameter, arteriovenous oxygen difference and mean circulation time. Circulation 33:302–316

    Article  Google Scholar 

  • Iftimia NV, Hammer DX, Bigelow CE, Rosen DI, Ustun T, Ferrante AA, Vu D, Ferguson RD (2006) Toward noninvasive measurement of blood hematocrit using spectral domain low coherence interferometry and retinal tracking. Opt Express 14(8):3377–3388

    Article  Google Scholar 

  • Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47(12):3039–3051

    Google Scholar 

  • Jean-Louis S, Lovasik J, Kergoat H (2005) Systemic hyperoxia and retinal vasomotor responses. Invest Ophthalmol Vis Sci 46:1714–1720

    Article  Google Scholar 

  • Kaschke M, Donnerhacke K-H, Rill MS (2013) Optical devices in ophthalmology and optometry: technology, design principles and clinical applications. Wiley, Germany

    Google Scholar 

  • Kassab GS, Berkley J, Fung Y-CB (1997) Analysis of pigs coronary arterial blood flow with detailed anatomical data. Ann Biomed Eng 25(1):204–217

    Article  Google Scholar 

  • Kerr N, Chew S, Danesh-Meyer H (2009) Non-arteritic anterior ischaemic optic neuropathy: a review and update. J Clin Neurosci 16(8):994–1000

    Article  Google Scholar 

  • Kida T, Morishita S, Kakurai K, Suzuki H, Oku H, Ikeda T (2014) Treatment of systemic hypertension is important for improvement of macular edema associated with retinal vein occlusion. Clin Ophthalmol 8:724780

    Google Scholar 

  • Koeppen B, Stanton B (2009) Berne and Levy Physiology. Mosby Elsevier, Philadelphia

    Google Scholar 

  • Kolar P (2014) Risk factors for central and branch retinal vein occlusion: a meta-analysis of published clinical data. J Ophthalmol 2014:724780

    Article  Google Scholar 

  • Lee J-S, Lee L-P (1992) A density method for determining plasma and red blood cell volume. Ann Biomed Eng 20(2):195–204

    Article  Google Scholar 

  • Li Z, Yipintsoi T, Bassingthwaighte JB (1997) Nonlinear model for capillary-tissue oxygen transport and metabolism. Ann Biomed Eng 25(4):604–619

    Article  Google Scholar 

  • Linsenmeier R (1986) Effects of light and darkness on oxygen distribution and consumption in the cat retina. J Gen Physiol 88(4):521–542

    Article  Google Scholar 

  • Linsenmeier R, Braun R (1992) Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J Gen Physiol 99:177–197

    Article  Google Scholar 

  • Liu D, Wood NB, Witt N, Hughes AD, Thom SA, Xu XY (2009) Computational analysis of oxygen transport in the retinal arterial network. Curr Eye Res 34(11):945–956

    Article  Google Scholar 

  • Luksch A, Garhofer G, Imhof A, Polak K, Polska E, Dorner G, Anzenhofer S, Wolzt M, Schmetterer L (2002) Effect of inhalation of different mixtures of \(\text{ O }_2\) and \(\text{ CO }_2\) on retinal blood flow. Br J Ophthalmol 86:1143–1147

    Article  Google Scholar 

  • Martinez F, Furió E, Fabià M, Pérez A, Gonzalez-Albert, Rojo-Martinez G, Martinez-Larrad M, Mena-Martin F, Soriguer F, Serrano-Rios M, Chaves F, Martin-Escudero J, Redòn J, Garcia-Fuster M (2014) Risk factors associated with retinal vein occlusion. Int J Clin Pract 68(7):871–881

    Article  Google Scholar 

  • Metzger H (1969) Distribution of oxygen partial pressure in a two-dimensional tissue supplied by capillary meshes and concurrent and countercurrent systems. Math Biosci 5(1):143–154

    Article  Google Scholar 

  • Michalska-Malecka K, Slowinska-Lozynska L, Romaniuk W (2012) Influence of rheological factors on the development of primary open angle glaucoma. Klin Ocz 114(2):135–137

    Google Scholar 

  • Moore D, Harris A, WuDunn D, Kheradiya N, Siesky B (2008) Dysfunctional regulation of ocular blood flow: a risk factor for glaucoma? Clin Ophthalmol 2(4):849–861

    Google Scholar 

  • Moore J, Ethier C (1997) Oxygen mass transfer calculations in large arteries. J Biomech Eng 119(4):469–475

    Article  Google Scholar 

  • Nair P, Huang N, Hellums J, Olson J (1990) A simple model for prediction of oxygen transport rates by flowing blood in large capillaries. Microvasc Res 39(2):203–211

    Article  Google Scholar 

  • Nakabayashi S, Nagaoka T, Tani T, Sogawa K, Hein T, Kuo L, Yoshida A (2012) Retinal arteriolar responses to acute severe elevation in systemic blood pressure in cats: role of endothelium-derived factors. Exp Eye Res 103:63–70

    Article  Google Scholar 

  • Nicolela M, Drance S, Rankin S, Buckley A, Walman B (1996) Color Doppler imaging in patients with asymmetric glaucoma and unilateral visual field loss. Am J Ophthalmol 121(5):502–510

    Article  Google Scholar 

  • Olufsen MS, Peskin CS, Kim WY, Pedersen EM, Nadim A, Larsen J (2000) Oxygen mass transfer calculations in large arteries. Ann Biomed Eng 28(11):1281–1299

    Article  Google Scholar 

  • Pepple D, Reid H (2009) Alterations in hemorheological determinants and glycated hemoglobin in black diabetic patients with retinopathy. J Natl Med Assoc 101(3):258–260

    Article  Google Scholar 

  • Perktold K, Prosi M, Zunino P (2009) Mathematical models of mass transfer in the vascular walls. In: Cardiovascular mathematics. Modeling and simulation of the circulatory system. Springer

  • Pogue BW, O’Hara JA, Wilmot CM, Paulsena KD, Swartz HM (2001) Estimation of oxygen distribution in RIF-1 tumors by diffusion model-based interpretation of pimonidazole hypoxia and Eppendorf measurements. Radiat Res 155:15–25

    Article  Google Scholar 

  • Polyak S (1941) The retina. University of Chicago Press, Chicago

    Google Scholar 

  • Popel AS (1989) Theory of oxygen transport to tissue. Crit Rev Biomed Eng 17(3):257–321

    Google Scholar 

  • Pournaras C, Rungger-Brandle E, Riva C, Hardarson S, Stefansson E (2008) Regulation of retinal blood flow in health and disease. Prog Retin Eye Res 27(3):284–330

    Article  Google Scholar 

  • Pries AR, Ley K, Claassen M, Gaehtgens P (1989) Red cell distribution at microvascular bifurcations. Microvasc Res 38:81–101

    Article  Google Scholar 

  • Quigley M, Cohen S (1999) A new pressure attenuation index to evaluate retinal circulation: a link to protective factors in diabetic retinopathy. Arch Ophthalmol 117(1):84–89

    Article  Google Scholar 

  • Ramm L, Jentsch S, Peters S, Augsten R, Hammer M (2014) Investigation of blood flow regulation and oxygen saturation of the retinal vessels in primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol 252(11):1803–1810

    Article  Google Scholar 

  • Riva C, Grunwald J, Sinclair S (1983) Laser doppler velocimetry study of the effect of pure oxygen breathing on retinal blood flow. Invest Ophthalmol Vis Sci 24:47–51

    Google Scholar 

  • Riva C, Pournaras C, Tsacopoulos M (1986) Regulation of local oxygen tension and blood flow in the inner retina during hyperoxia. J Appl Physiol 61:592–598

    Google Scholar 

  • Riva CE, Grunwald JE, Sinclair SH, Perring BL (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26(8):1124–1132

    Google Scholar 

  • Roos WM (2004) Theoretical estimation of retinal oxygenation during retinal artery occlusion. Physiol Meas 25(6):1523–1532

    Article  Google Scholar 

  • Sacco R, Carichino L, de Falco C, Verri M, Agostini F, Gradinger T (2014) A multiscale thermo-fluid computational model for a two-phase cooling system. Comput Methods Appl Mech Eng 282:239–268

    Article  MathSciNet  Google Scholar 

  • Satilmis M, Orguel S, Doubler B, Flammer J (2003) Rate of progression of glaucoma correlates with retrobulbar circulation and intraocular pressure. Am J Ophthalmol 135(5):664669

    Article  Google Scholar 

  • Schweitzer D, Hammer M, Kraft J, Thamm E, Konigsdorffer E, Strobel J (1999) In vivo measurement of the oxygen saturation of retinal vessels in healthy volunteers. IEEE Trans Biomed Eng 46(12):1454–1465

    Article  Google Scholar 

  • Sharan M, Popel A (2002) A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes. J Theor Biol 216:479–500

    Article  MathSciNet  Google Scholar 

  • Snodderly DM, Weinhaus RS, Choi J (1992) Neural-vascular relationships in central retina of macaque monkeys (macaca fascicularis). J Neurosci 12(4):1169–1193

    Google Scholar 

  • Song W, Wei Q, Liu W, Liu T, Yi J, Sheibani N, Fawzi AA, Linsenmeier RA, Jiao S, Zhang HF (2014) A combined method to quantify the retinal metabolic rate of oxygen using photoacoustic ophthalmoscopy and optical coherence tomography. Sci Rep 4:6525

    Article  Google Scholar 

  • Stefansson E, Wagner H, Seida M (1988) Retinal blood flow and its autoregulation measured by intraocular hydrogen clearance. Exp Eye Res 47:669–678

    Article  Google Scholar 

  • Takahashi T, Nagaoka T, Panagida H, Saitoh T, Kamiya A, Hein T, Kuo L, Yoshida A (2009) A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J Biorheol 23(77–86):2999–3013

    Google Scholar 

  • Talu S, Giovanzana S et al (2012) Image analysis of the normal human retinal vasculature using fractal geometry. HVM Bioflux 4(1):14–18

    Google Scholar 

  • Tsoukias NM, Goldman D, Vadapalli A, Pittman RN, Popel AS (2007) A computational model of oxygen delivery by hemoglobin-based oxygen carriers in three-dimensional microvascular networks. J Theor Biol 248(4):657–674

    Article  MathSciNet  Google Scholar 

  • Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557

    Article  Google Scholar 

  • Weinberger B, Laskin DL, Heck DE, Laskin JD (2002) Oxygen toxicity in premature infants. Toxicol Appl Pharm 181(1):60–67

    Article  Google Scholar 

  • Weinreb R, Harris A (2009) Ocular blood flow in glaucoma. World Glaucoma Association Consensus Series. Kugler Publications, Amsterdam

    Google Scholar 

  • Werkmeister RM, Dragostinoff N, Palkovits S, Told R, Boltz A, Leitgeb RA, Gröschl M, Garhöfer G, Schmetterer L (2012) Measurement of absolute blood flow velocity and blood flow in the human retina by dual-beam bidirectional Doppler Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 53(10):6062–6071

    Article  Google Scholar 

  • Witten TA, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomena. Phys Rev Lett 47(19):1400–1403

    Article  Google Scholar 

  • Wong T, Mitchell P (2007) The eye in hypertension. Lancet 369(9559):425–435

    Article  Google Scholar 

  • Ye GF, Moore TW, Jaron D (1993) Contributions of oxygen dissociation and convection to the behavior of a compartmental oxygen transport model. Microvasc Res 46(1):1–18

    Article  Google Scholar 

  • Ye GF, Moore TW, Buerk DG, Jaron D (1994) A compartmental model for oxygen-carbon dioxide coupled transport in the microcirculation. Ann Biomed Eng 22(5):464–479

    Article  Google Scholar 

  • Zunino P (2002) Mathematical and numerical modelling of mass transfer in the vascular system. Phd dissertation, EPFL

Download references

Acknowledgments

This work has been partially supported by the NSF DMS-1224195, NIH1R21EY022101-01A1, the Indiana University Collaborative Research Grant of the Office of the Vice President for Research and the Chair Gutenberg funds and has been partially supported by an Unrestricted Grant from “Research to Prevent Blindness.” We thank the anonymous Reviewers for their thorough revision work and for their suggestions which helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Causin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3829 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Causin, P., Guidoboni, G., Malgaroli, F. et al. Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomech Model Mechanobiol 15, 525–542 (2016). https://doi.org/10.1007/s10237-015-0708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0708-7

Keywords

Navigation