Skip to main content
Log in

Constructing group actions on quasi-trees and applications to mapping class groups

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

A quasi-tree is a geodesic metric space quasi-isometric to a tree. We give a general construction of many actions of groups on quasi-trees. The groups we can handle include non-elementary (relatively) hyperbolic groups, CAT(0) groups with rank 1 elements, mapping class groups and Out(F n ). As an application, we show that mapping class groups act on finite products of δ-hyperbolic spaces so that orbit maps are quasi-isometric embeddings. We prove that mapping class groups have finite asymptotic dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Algom-Kfir, Strongly contracting geodesics in outer space, Geom. Topol., 15 (2011), 2181–2234.

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Algom-Kfir and M. Bestvina, Asymmetry of outer space, Geom. Dedic., 156 (2012), 81–92.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Publ. Math. IHÉS, 82 (1995), 169–209 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. A. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol., 10 (2006), 1523–1578.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Behrstock and R. Charney, Divergence and quasimorphisms of right-angled Artin groups, Math. Ann., 352 (2012), 339–356.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Behrstock, C. Druţu, and M. Sapir, Addendum: median structures on asymptotic cones and homomorphisms into mapping class groups [mr2783135], Proc. Lond. Math. Soc. (3), 102 (2011), 555–562.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Behrstock, C. Druţu, and M. Sapir, Median structures on asymptotic cones and homomorphisms into mapping class groups, Proc. Lond. Math. Soc. (3), 102 (2011), 503–554.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. A. Behrstock and Y. N. Minsky, Dimension and rank for mapping class groups, Ann. Math. (2), 167 (2008), 1055–1077.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. C. Bell and A. N. Dranishnikov, A Hurewicz-type theorem for asymptotic dimension and applications to geometric group theory, Trans. Am. Math. Soc., 358 (2006), 4749–4764, electronic.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Bell and A. Dranishnikov, Asymptotic dimension, Topol. Appl., 155 (2008), 1265–1296.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. C. Bell and K. Fujiwara, The asymptotic dimension of a curve graph is finite, J. Lond. Math. Soc. (2), 77 (2008), 33–50.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Bestvina, A Bers-like proof of the existence of train tracks for free group automorphisms, Fundam. Math., 214 (2011), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Bestvina and K. Bromberg, On the asymptotic dimension of a curve complex, preprint (2014).

  14. M. Bestvina, K. Bromberg, and K. Fujiwara, Bounded cohomology with coefficients in uniformly convex Banach spaces, arXiv:1306.1542.

  15. M. Bestvina, K. Bromberg, and K. Fujiwara, Projection complexes, acylindrically hyperbolic groups and bounded cohomology, preprint (2014).

  16. M. Bestvina, K. Bromberg, and K. Fujiwara, Stable commutator length on mapping class groups, arXiv:1306.2394.

  17. M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors, Adv. Math., 256 (2014), 104–155.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Bestvina and M. Feighn, Subfactor projections, J. Topol., 7 (2014), 771–804, doi:10.1112/jtopol/jtu001.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Bestvina and K. Fujiwara, Bounded cohomology of subgroups of mapping class groups, Geom. Topol., 6 (2002), 69–89, electronic.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. Bestvina and K. Fujiwara, A characterization of higher rank symmetric spaces via bounded cohomology, Geom. Funct. Anal., 19 (2009), 11–40.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. H. Bowditch, Tight geodesics in the curve complex, Invent. Math., 171 (2008), 281–300.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. R. Bridson, Semisimple actions of mapping class groups on CAT(0) spaces, in Geometry of Riemann Surfaces, London Math. Soc. Lecture Note Ser., vol. 368, pp. 1–14, Cambridge University Press, Cambridge, 2010.

    Chapter  Google Scholar 

  23. M. R. Bridson and K. Vogtmann, Automorphism groups of free groups, surface groups and free Abelian groups, in Problems on Mapping Class Groups and Related Topics, Proc. Sympos. Pure Math., vol. 74, pp. 301–316, Am. Math. Soc., Providence, 2006.

    Chapter  Google Scholar 

  24. J. F. Brock, Pants decompositions and the Weil-Petersson metric, in Complex Manifolds and Hyperbolic Geometry (Guanajuato, 2001), Contemp. Math., vol. 311, pp. 27–40, Am. Math. Soc., Providence, 2002.

    Chapter  Google Scholar 

  25. J. F. Brock, The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Am. Math. Soc., 16 (2003), 495–535, electronic.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Burger and S. Mozes, Lattices in product of trees, Publ. Math. IHÉS, 92 (2000), 151–194 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  27. P.-E. Caprace and K. Fujiwara, Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal., 19 (2010), 1296–1319.

    Article  MathSciNet  MATH  Google Scholar 

  28. P.-E. Caprace, and M. Sageev, Rank rigidity for CAT(0) cube complexes, Geom. Funct. Anal., 21 (2011), 851–891.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. J. Casson and S. A. Bleiler, Automorphisms of Surfaces After Nielsen and Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University Press, Cambridge, 1988.

    Book  MATH  Google Scholar 

  30. M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math., 84 (1986), 91–119.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, arXiv:1111.7048.

  32. P. de la Harpe and A. Valette, La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Astérisque, 175 (1989), 158. With an appendix by M. Burger.

    Google Scholar 

  33. T. Delzant, A finiteness property on monodromies of holomorphic families, arXiv:1402.4384.

  34. C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups, Topology, 44 (2005), 959–1058. With an appendix by Denis Osin and Sapir.

    Article  MathSciNet  MATH  Google Scholar 

  35. D. B. A. Epstein and K. Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology, 36 (1997), 1275–1289.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Eskin, H. Masur, and R. Kasra, Large scale rank of Teichmüller space, arXiv:1307.3733.

  37. B. Farb, A. Lubotzky, and Y. Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J., 106 (2001), 581–597.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, vol. 49, Princeton University Press, Princeton, 2012.

    Google Scholar 

  39. R. Frigerio, M. B. Pozzetti, and A. Sisto, Extending higher dimensional quasi-cocycles, arXiv:1311.7633.

  40. M. Gromov, Hyperbolic groups, in Essays in Group Theory, Math. Sci. Res. Inst. Publ., vol. 8, pp. 75–263, Springer, New York, 1987.

    Chapter  Google Scholar 

  41. M. Gromov, Asymptotic invariants of infinite groups, in Geometric Group Theory, Vol. 2 (Sussex, 1991), London Math. Soc. Lecture Note Ser., vol. 182, pp. 1–295, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  42. U. Hamenstädt, Geometry of the mapping class groups. I. Boundary amenability, Invent. Math., 175 (2009), 545–609.

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Handel and L. Mosher, The free splitting complex of a free group, I: hyperbolicity, Geom. Topol., 17 (2013), 1581–1672.

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Hume, Embedding mapping class groups into finite products of trees, arXiv:1207.2132.

  45. S. P. Kerckhoff, The asymptotic geometry of Teichmüller space, Topology, 19 (1980), 23–41.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Kida, The Mapping Class Group from the Viewpoint of Measure Equivalence Theory, Mem. Am. Math. Soc., vol. 196, 2008, (916):viii+190.

    Google Scholar 

  47. J. M. Mackay and A. Sisto, Embedding relatively hyperbolic groups in products of trees, Algebr. Geom. Topol., 13 (2013), 2261–2282.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. F. Manning, Geometry of pseudocharacters, Geom. Topol., 9 (2005), 1147–1185, electronic.

    Article  MathSciNet  MATH  Google Scholar 

  49. J. F. Manning, Quasi-actions on trees and property (QFA), J. Lond. Math. Soc. (2), 73 (2006), 84–108. With an appendix by N. Monod and B. Rémy.

    Article  MathSciNet  MATH  Google Scholar 

  50. J. Mangahas, Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal., 19 (2010), 1468–1480.

    Article  MathSciNet  MATH  Google Scholar 

  51. J. Mangahas, A recipe for short-word pseudo-Anosovs, Am. J. Math., 135 (2013), 1087–1116.

    Article  MathSciNet  MATH  Google Scholar 

  52. Á. Martínez-Pérez, Bushy pseudocharacters and group actions on quasitrees, Algebr. Geom. Topol., 12 (2012), 1725–1743.

    Article  MathSciNet  MATH  Google Scholar 

  53. H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math., 138 (1999), 103–149.

    Article  MathSciNet  MATH  Google Scholar 

  54. H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal., 10 (2000), 902–974.

    Article  MathSciNet  MATH  Google Scholar 

  55. Y. N. Minsky, Extremal length estimates and product regions in Teichmüller space, Duke Math. J., 83 (1996), 249–286.

    Article  MathSciNet  MATH  Google Scholar 

  56. Y. N. Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math., 473 (1996), 121–136.

    MathSciNet  MATH  Google Scholar 

  57. N. Monod, An invitation to bounded cohomology, in International Congress of Mathematicians, vol. II, pp. 1183–1211, Eur. Math. Soc., Zurich, 2006.

    Google Scholar 

  58. L. Mosher, M. Sageev, and K. Whyte, Quasi-actions on trees. I. Bounded valence, Ann. Math. (2), 158 (2003), 115–164.

    Article  MathSciNet  MATH  Google Scholar 

  59. D. Osin, Acylindrically hyperbolic groups, arXiv:1304.1246.

  60. J. Roe, Lectures on Coarse Geometry, University Lecture Series, vol. 31, Am. Math. Soc., Providence, 2003.

    MATH  Google Scholar 

  61. A. Sisto, On metric relative hyperbolicity, arXiv:1210.8081.

  62. K. Vogtmann, Automorphisms of free groups and outer space, in Proceedings of the Conference on Geometric and Combinatorial Group Theory, Part I (Haifa, 2000), vol. 94, pp. 1–31, 2002.

    Google Scholar 

  63. K. Vogtmann, The cohomology of automorphism groups of free groups, in International Congress of Mathematicians, vol. II, pp. 1101–1117, Eur. Math. Soc., Zurich, 2006.

    Google Scholar 

  64. R. C. H. Webb, Combinatorics of tight geodesics and stable lengths, arXiv:1305.3566.

  65. G. Yu, The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math. (2), 147 (1998), 325–355.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Fujiwara.

Additional information

The first two authors gratefully acknowledge the support by the National Science Foundation. The third author is supported in part by Grant-in-Aid for Scientific Research (No. 23244005).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bestvina, M., Bromberg, K. & Fujiwara, K. Constructing group actions on quasi-trees and applications to mapping class groups. Publ.math.IHES 122, 1–64 (2015). https://doi.org/10.1007/s10240-014-0067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-014-0067-4

Keywords

Navigation