Skip to main content
Log in

Integral \(p\)-adic Hodge theory

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

We construct a new cohomology theory for proper smooth (formal) schemes over the ring of integers of \(\mathbf {C}_{p}\). It takes values in a mixed-characteristic analogue of Dieudonné modules, which was previously defined by Fargues as a version of Breuil–Kisin modules. Notably, this cohomology theory specializes to all other known \(p\)-adic cohomology theories, such as crystalline, de Rham and étale cohomology, which allows us to prove strong integral comparison theorems.

The construction of the cohomology theory relies on Faltings’ almost purity theorem, along with a certain functor \(L\eta \) on the derived category, defined previously by Berthelot–Ogus. On affine pieces, our cohomology theory admits a relation to the theory of de Rham–Witt complexes of Langer–Zink, and can be computed as a \(q\)-deformation of de Rham cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The Stacks Project, available at http://stacks.math.columbia.edu.

  2. A. Abbes and M. Gros, Topos co-évanescents et généralisations, Annals of Mathematics Studies, vol. 193, 2015.

    Google Scholar 

  3. F. Andreatta and A. Iovita, Comparison isomorphisms for smooth formal schemes, J. Inst. Math. Jussieu, 12 (2013), 77–151.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Beauville and Y. Laszlo, Un lemme de descente, C. R. Acad. Sci., Sér. 1 Math., 320 (1995), 335–340.

    MathSciNet  MATH  Google Scholar 

  5. P. Berthelot, Sur le “théorème de Lefschetz faible” en cohomologie cristalline, C. R. Acad. Sci. Paris, Sér. A-B, 277 (1973), A955–A958.

    MATH  Google Scholar 

  6. P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton University Press/University of Tokyo Press, Princeton/Tokyo, 1978.

    MATH  Google Scholar 

  7. P. Berthelot and A. Ogus, \(F\)-isocrystals and de Rham cohomology. I, Invent. Math., 72 (1983), 159–199.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bhatt, M. Morrow and P. Scholze, Topological Hochschild homology and integral \(p\)-adic Hodge theory, available at arXiv:1802.03261 [math.AG].

  9. B. Bhatt, M. Morrow and P. Scholze, Integral \(p\)-adic Hodge theory—announcement, Math. Res. Lett., 22 (2015), 1601–1612.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Bhatt and P. Scholze, Prisms and prismatic cohomology, in preparation.

  11. B. Bhatt and P. Scholze, The pro-étale topology for schemes, Astérisque, 369 (2015), 99–201.

    MATH  Google Scholar 

  12. S. Bloch and K. Kato, \(p\)-adic étale cohomology, Publ. Math. IHÉS, 63 (1986), 107–152.

    Article  MATH  Google Scholar 

  13. E. Bombieri and D. Mumford, Enriques’ classification of surfaces in char. \(p\). III, Invent. Math., 35 (1976), 197–232.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Borger, The basic geometry of Witt vectors, I: The affine case, Algebra Number Theory, 5 (2011), 231–285.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Bosch, U. Güntzer and R. Remmert, Non-Archimedean Analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 261, Springer, Berlin, 1984, A systematic approach to rigid analytic geometry.

    MATH  Google Scholar 

  16. S. Bosch and W. Lütkebohmert, Formal and rigid geometry. I. Rigid spaces, Math. Ann., 295 (1993), 291–317.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Breuil, Groupes \(p\)-divisibles, groupes finis et modules filtrés, Ann. Math., 152 (2000), 489–549.

    Article  MathSciNet  MATH  Google Scholar 

  18. O. Brinon, Représentations \(p\)-adiques cristallines et de de Rham dans le cas relatif, in Mém. Soc. Math. Fr. (N. S.), vol. 112, 2008, vi+159 pp.

    Google Scholar 

  19. X. Caruso, Conjecture de l’inertie modérée de Serre, Invent. Math., 171 (2008), 629–699.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Colmez and W. Nizioł, Syntomic complexes and \(p\)-adic nearby cycles, Invent. Math., 208 (2017), 1–108.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Conrad and O. Gabber, Spreading out of rigid-analytic varieties, in preparation.

  22. C. Davis and K. S. Kedlaya, On the Witt vector Frobenius, Proc. Am. Math. Soc., 142 (2014), 2211–2226.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. J. de Jong, Smoothness, semi-stability and alterations, Publ. Math. IHÉS, 83 (1996), 51–93.

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Deligne and L. Illusie, Relèvements modulo \(p^{2}\) et décomposition du complexe de de Rham, Invent. Math., 89 (1987), 247–270.

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Ekedahl, Answer on Mathoverflow, http://mathoverflow.net/questions/21023/liftability-of-enriques-surfaces-from-char-p-to-zero.

  26. R. Elkik, Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. Éc. Norm. Supér., 6 (1973), 553–603.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Faltings, \(p\)-adic Hodge theory, J. Am. Math. Soc., 1 (1988), 255–299.

    MathSciNet  MATH  Google Scholar 

  28. G. Faltings, Integral crystalline cohomology over very ramified valuation rings, J. Am. Math. Soc., 12 (1999), 117–144.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Faltings, Almost étale extensions, Cohomologies \(p\)-adiques et applications arithmétiques, II, Astérisque, 279 (2002), 185–270.

    MATH  Google Scholar 

  30. L. Fargues, Quelques résultats et conjectures concernant la courbe, Astérisque, 369 (2015), 325–374.

    MathSciNet  MATH  Google Scholar 

  31. L. Fargues and J.-M. Fontaine, Courbes et fibrés vectoriels en théorie de Hodge \(p\)-adique, available at http://webusers.imj-prg.fr/~laurent.fargues/Courbe_fichier_principal.pdf.

  32. J.-M. Fontaine, Sur certains types de représentations \(p\)-adiques du groupe de Galois d’un corps local; construction d’un anneau de Barsotti-Tate, Ann. Math., 115 (1982), 529–577.

    Article  MathSciNet  MATH  Google Scholar 

  33. J.-M. Fontaine, Perfectoïdes, presque pureté et monodromie-poids (d’après Peter Scholze), Astérisque, 352 (2013), 509–534, Exp. No. 1057, x. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058.

    MATH  Google Scholar 

  34. J.-M. Fontaine and W. Messing, \(p\)-adic periods and \(p\)-adic étale cohomology, in Current Trends in Arithmetical Algebraic Geometry, Arcata, Calif., 1985, Contemp. Math., vol. 67, pp. 179–207, Am. Math. Soc., Providence, 1987.

    Chapter  Google Scholar 

  35. J.-M. Fontaine and Y. Ouyang, Theory of \(p\)-adic Galois representations, available at https://www.math.u-psud.fr/~fontaine/galoisrep.pdf.

  36. O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal., 11 (2001), 1192–1200.

    Article  MathSciNet  MATH  Google Scholar 

  37. O. Gabber, L. Ramero, Almost Ring Theory, Lecture Notes in Mathematics, vol. 1800, Springer, Berlin, 2003, vi+307 pp. ISBN 3-540-40594-1.

    MATH  Google Scholar 

  38. O. Gabber and L. Ramero, Foundations of almost ring theory, http://math.univ-lille1.fr/~ramero/hodge.pdf.

  39. T. Geisser and L. Hesselholt, The de Rham-Witt complex and \(p\)-adic vanishing cycles, J. Am. Math. Soc., 19 (2006), 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Hesselholt, On the topological cyclic homology of the algebraic closure of a local field, in An Alpine Anthology of Homotopy Theory, Contemp. Math., vol. 399, pp. 133–162, Am. Math. Soc., Providence, 2006.

    Chapter  Google Scholar 

  41. R. Huber, A generalization of formal schemes and rigid analytic varieties, Math. Z., 217 (1994), 513–551.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Huber, Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, vol. E30, Vieweg, Braunschweig, 1996.

    Book  MATH  Google Scholar 

  43. L. Illusie, Complexe de de Rham-Witt et cohomologie cristalline, Ann. Sci. Éc. Norm. Supér., 12 (1979), 501–661.

    Article  MATH  Google Scholar 

  44. L. Illusie and M. Raynaud, Les suites spectrales associées au complexe de de Rham-Witt, Publ. Math. IHÉS, 57 (1983), 73–212.

    Article  MATH  Google Scholar 

  45. N. M. Katz, \(p\)-adic properties of modular schemes and modular forms, in Modular Functions of One Variable III, Lecture Notes in Mathematics, vol. 350, pp. 69–190, 1973.

    Chapter  Google Scholar 

  46. K. S. Kedlaya, Nonarchimedean geometry of Witt vectors, Nagoya Math. J., 209 (2013), 111–165.

    Article  MathSciNet  MATH  Google Scholar 

  47. K. S. Kedlaya, Some ring-theoretic properties of A_inf, arXiv:1602.09016.

  48. K. S. Kedlaya and R. Liu, Relative \(p\)-adic Hodge theory: foundations, Astérisque, 371 (2015), 239.

    MathSciNet  MATH  Google Scholar 

  49. M. Kisin, Crystalline representations and \(F\)-crystals, in Algebraic Geometry and Number Theory, Progr. Math., vol. 253, pp. 459–496, Birkhäuser Boston, Boston, 2006.

    Chapter  Google Scholar 

  50. M. Kisin, Integral models for Shimura varieties of Abelian type, J. Am. Math. Soc., 23 (2010), 967–1012.

    Article  MathSciNet  MATH  Google Scholar 

  51. W. E. Lang, On Enriques surfaces in characteristic \(p\). I, Math. Ann., 265 (1983), 45–65.

    Article  MathSciNet  MATH  Google Scholar 

  52. A. Langer and T. Zink, De Rham-Witt cohomology for a proper and smooth morphism, J. Inst. Math. Jussieu, 3 (2004), 231–314.

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Liedtke, Arithmetic moduli and lifting of Enriques surfaces, J. Reine Angew. Math., 706 (2015), 35–65.

    MathSciNet  MATH  Google Scholar 

  54. W. Lütkebohmert, Formal-algebraic and rigid-analytic geometry, Math. Ann., 286 (1990), 341–371.

    Article  MathSciNet  MATH  Google Scholar 

  55. B. Poonen, Bertini theorems over finite fields, Ann. Math., 160 (2004), 1099–1127.

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Raynaud and L. Gruson, Critères de platitude et de projectivité. Techniques de “platification” d’un module, Invent. Math., 13 (1971), 1–89.

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Schlessinger, Functors of Artin rings, Trans. Am. Math. Soc., 130 (1968), 208–222.

    Article  MathSciNet  MATH  Google Scholar 

  58. P. Scholze, Perfectoid spaces, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 245–313.

    Article  MathSciNet  MATH  Google Scholar 

  59. P. Scholze, \(p\)-adic Hodge theory for rigid-analytic varieties, Forum Math. Pi, 1, e1, 77 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  60. P. Scholze, Perfectoid spaces: a survey, in Current Developments in Mathematics 2012, pp. 193–227, International Press, Somerville, 2013.

    Google Scholar 

  61. P. Scholze, \(p\)-adic Hodge theory for rigid-analytic varieties—corrigendum [MR3090230], Forum Math. Pi, 4, e6, 4 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  62. P. Scholze and J. Weinstein, \(p\)-adic geometry, Lecture notes from course at UC Berkeley in Fall 2014, available at https://www.math.uni-bonn.de/people/scholze/Berkeley.pdf.

  63. F. Tan and J. Tong, Crystalline comparison isomorphisms in p-adic hodge theory: the absolutely unramified case, available at http://arxiv.org/abs/1510.05543.

  64. T. Tsuji, \(p\)-adic étale cohomology and crystalline cohomology in the semi-stable reduction case, Invent. Math., 137 (1999), 233–411.

    Article  MathSciNet  MATH  Google Scholar 

  65. W. van der Kallen, Descent for the \(K\)-theory of polynomial rings, Math. Z., 191 (1986), 405–415.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhargav Bhatt.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatt, B., Morrow, M. & Scholze, P. Integral \(p\)-adic Hodge theory. Publ.math.IHES 128, 219–397 (2018). https://doi.org/10.1007/s10240-019-00102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-019-00102-z

Navigation