Skip to main content
Log in

Characterization of two laccases of loblolly pine (Pinus taeda) expressed in tobacco BY-2 cells

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

We previously showed that eight laccase genes (Lac 1Lac 8) are preferentially expressed in differentiating xylem and are associated with lignification in loblolly pine (Pinus taeda) [Sato et al. (2001) J Plant Res 114:147–155]. In this study we generated transgenic tobacco suspension cell cultures that express the pine Lac 1 and Lac 2 proteins, and characterized the abilities of these proteins to oxidize monolignols. Lac 1 and Lac 2 enzymatic activities were detected only in the cell walls of transgenic tobacco cells, and could be extracted with high salt. The optimum pH for laccase activity with coniferyl alcohol as substrate was 5.0 for Lac 1 and between 5.0 and 6.0 for Lac 2. The activities of Lac 1 and Lac 2 increased as the concentration of CuSO4 in the reaction mixtures increased in the range from 1 to 100 μM. Both enzymes were able to oxidize coniferyl alcohol and to produce dimers of coniferyl alcohol. These results are consistent with the hypothesis that Lac 1 and Lac 2 are involved in lignification in differentiating xylem of loblolly pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bailey MR, Woodard SL, Callaway E, Beifuss K, Magallanes-Lundback M, Lane JR, Horn ME, Mallubhotla H, Delaney DD, Ward M, Van Gastel F, Howard JA, Hood EE (2004) Improved recovery of active recombinant laccase from maize seed. Appl Microbiol Biotechnol 63:390–397

    Article  PubMed  CAS  Google Scholar 

  • Baker SS, Rugh CL, Kamalay JC (1990) RNA and DNA isolation from recalcitrant plant tissues. BioTechniques 9:268–272

    PubMed  CAS  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:636–638

    Article  Google Scholar 

  • Bligny R, Gaillard J, Douce R (1986) Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Effects of a copper deficiency. Biochem J 237:583–588

    PubMed  CAS  Google Scholar 

  • Davin LB, Bedgar DL, Katayama T, Lewis NG (1992) On the stereospecific synthesis of (+) pinoresinol in Forsythia suspensa from its achiral precursor, coniferyl alcohol. Phytochemistry 31:3869–3874

    Article  PubMed  CAS  Google Scholar 

  • Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M, Matsuoka N, Minami A, Nagata-Hiwatashi M, Nakamura K, Okamura Y, Sassa N, Suzuki S, Yazaki J, Kikuchi S, Fukuda H (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc Natl Acad Sci USA 99:15794–15799

    Article  PubMed  Google Scholar 

  • Driouich A, Laine AC, Vian B, Faye L (1992) Characterization and localization of laccase forms in stem and cell cultures of sycamore. Plant J 2:13–24

    Article  CAS  Google Scholar 

  • Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–1456

    PubMed  CAS  Google Scholar 

  • Fromard L, Babin V, Fleurat-Lessard P, Fromont J-C, Serrano R, Bonnemain J-L (1995) Control of vascular sap pH by the vessel-associated cells in woody species. Plant Physiol 108:913–918

    PubMed  CAS  Google Scholar 

  • Lafayette PR, Eriksson K-EL, Dean JFD (1999) Characterization and heterologous expression of laccase cDNAs from xylem tissues yellow poplar (Liriodendron tulipifera). Plant Mol Biol 40:23–35

    Article  PubMed  CAS  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM (1987) Polyphenol oxidases in plants—recent progress. Phytochemistry 26:11–20

    Article  Google Scholar 

  • McCaig BC, Meagher RB, Dean JF (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636

    Article  PubMed  CAS  Google Scholar 

  • McDougall GJ, Morrison IM (1996) Extraction and partial purification of cell wall-associated coniferyl alcohol oxidase from developing xylem of Sitka spruce. Holzforschung 50:549–553

    Article  CAS  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    PubMed  CAS  Google Scholar 

  • Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 cell line as the ‘HeLa’ cell in the cell biology of higher plants. Inter Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nakamura K, Go N (2005) Function and molecular evolution of multicopper blue proteins. Cell Mol Life Sci 62:2050–2066

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet AM, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases, a divergent gene family in poplar. Eur J Biochem 259:485–495

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S, Danoun S, Jauneau A, Boudet AM, Goffner D (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129:145–155

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Sugiyama M, Górecki RJ, Fukuda H, Komamine A (1993) Interrelationship between lignin deposition and the activities of peroxidase isoenzymes in differentiating tracheary elements of Zinnia. Planta 189:584–589

    Article  CAS  Google Scholar 

  • Sato Y, Sugiyama M, Komamine A, Fukuda H (1995) Separation and characterization of the isoenzymes of wall-bound peroxidase from cultured Zinnia cells during tracheary element differentiation. Planta 196:141–147

    Article  CAS  Google Scholar 

  • Sato Y, Wuli B, Sederoff R, Whetten R (2001) Molecular cloning and expression of eight laccase cDNAs in loblolly pine (Pinus taeda). J Plant Res 114:147–155

    Article  CAS  Google Scholar 

  • Sato Y, Demura T, Yamawaki K, Inoue Y, Sato S, Sugiyama M, Fukuda H (2006) Isolation and characterization of a novel peroxidase gene ZPO-C of which expression and function are closely associated with lignification during tracheary element differentiation. Plant Cell Physiol 47:493–503

    Article  PubMed  CAS  Google Scholar 

  • Schell J (1997) Interdependence of pH, malate concentration, and calcium and magnesium concentrations in the xylem sap of beech roots. Tree Physiol 17:479–483

    PubMed  CAS  Google Scholar 

  • Sterjiades R, Dean JFD, Eriksson K-EL (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168

    Article  PubMed  CAS  Google Scholar 

  • Sterjiades R, Ranocha P, Boudet AM, Goffner D (1996) Identification of specific laccases isoforms capable of polymerizing monolignols by an “in gel” procedure. Anal Biochem 242:158–161

    Article  PubMed  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tokunaga N, Sakakibara N, Umezawa T, Ito Y, Fukuda H, Sato Y (2005) Involvement of extracellular dilignols in lignification during tracheary element differentiation of isolated Zinnia mesophyll cells. Plant Cell Physiol 46:224–232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Yuko Ohashi of the National Institute of Agrobiological Sciences for providing a binary vector pBE2113-GUS, Dr. Tsuyoshi Kaneta of Ehime University for technical help in transformation of tobacco BY-2 cells, and Professor Masahiro Inouhe of Ehime University for use of equipment. This work was supported in part by a project grant from Ehime University (Rudimentary Research Support to Y.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, Y., Whetten, R.W. Characterization of two laccases of loblolly pine (Pinus taeda) expressed in tobacco BY-2 cells. J Plant Res 119, 581–588 (2006). https://doi.org/10.1007/s10265-006-0020-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-006-0020-9

Keywords

Navigation