Skip to main content

Advertisement

Log in

Bone response to immediate loading through titanium implants with different surface roughness in rats

  • Original Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Because of its high predictability of success, implant therapy is a reliable treatment for replacement of missing teeth. The concept of immediate implant loading has been widely accepted in terms of early esthetic and functional recovery. However, there is little biological evidence to support this concept. The objective of this study was to examine the interactive effects of mechanical loading and surface roughness of immediately loaded titanium implants on bone formation in rats. Screw-shaped anodized titanium implants were either untreated (smooth) or acid-etched. Two implants were inserted parallel to each other in the tibiae of rats, and a closed coil spring (2.0 N) was immediately applied. Trabecular and cortical bone around both implants was analyzed using microtomographic images, and a removal torque test was performed at weeks 1, 2, and 4. Immediate loading of acid-etched implants resulted in significant decreases in bone mineral density, contact surface area, and cortical bone thickness. These effects were not observed after immediate loading of smooth implants. Conversely, loading did not influence acid-etched implant fixation; however, smooth implant fixation at week 1 was significantly reduced. These results imply that surface roughness regulates bone response to mechanical stress and that immediate loading might not inhibit osseointegration for smooth and rough implants in the late healing stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brånemark PI, Zarb G, Albrektsson T. Tissue-integrated prostheses: osseointegration in clinical dentistry. Chicago: Quintessence 1985:11–77.

  2. Brånemark PI, Hansson B, Adell R, Breine U, Lindström J, Hallén O, Ohman A. Osseointegrated implants in the treatment of the edentulous jaw. Experience from a 10-year period. Scand J Plast Reconstr Surg Suppl. 1977;16:1–132.

    PubMed  Google Scholar 

  3. Boyan BD, Lossdorfer S, Wang L, Zhao G, Lohmann CH, Cochran DL, Schwartz Z. Osteoblasts generate an osteogenic microenvironment when grown on surfaces with rough microtopographies. Eur Cell Mater. 2003;6:22–7.

    PubMed  Google Scholar 

  4. Schwartz Z, Lohmann CH, Vocke AK, Sylvia VL, Cochran DL, Dean DD, Boyan BD. Osteoblast response to titanium surface roughness and 1alpha, 25-(OH)(2)D(3) is mediated through the mitogen-activated protein kinase (MAPK) pathway. J Biomed Mater Res. 2001;56:417–26.

    PubMed  Google Scholar 

  5. Takeuchi K, Saruwatari L, Nakamura HK, Yang JM, Ogawa T. Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface. J Biomed Mater Res A. 2005;72:296–305.

    PubMed  Google Scholar 

  6. Lai HC, Zhuang LF, Zhang ZY, Wieland M, Liu X. Bone apposition around two different sandblasted, large-grit and acid-etched implant surfaces at sites with coronal circumferential defects: an experimental study in dogs. Clin Oral Implants Res. 2009;20:247–53.

    PubMed  Google Scholar 

  7. Butz F, Ogawa T, Nishimura I. Interfacial shear strength of endosseous implants. Int J Oral Maxillofac Implants. 2011;26:746–51.

    PubMed  Google Scholar 

  8. Cooper LF. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J Prosthet Dent. 2000;84:522–34.

    PubMed  Google Scholar 

  9. Ogawa T, Nishimura I. Different bone integration profiles of turned and acid-etched implants associated with modulated expression of extracellular matrix genes. Int J Oral Maxillofac Implants. 2003;18:200–10.

    PubMed  Google Scholar 

  10. Ogawa T, Ozawa S, Shih JH, Ryu KH, Sukotjo C, Yang JM, Nishimura I. Biomechanical evaluation of osseous implants having different surface topographies in rats. J Dent Res. 2000;79:1857–63.

    PubMed  Google Scholar 

  11. Sanuki R, Shionome C, Kuwabara A, Mitsui N, Koyama Y, Suzuki N, Zhang F, Shimizu N, Maeno M. Compressive force induces osteoclast differentiation via prostaglandin E(2) production in MC3T3-E1 cells. Connect Tissue Res. 2010;51:150–8.

    PubMed  Google Scholar 

  12. Balcells M, Fernandez Suarez M, Vazquez M, Edelman ER. Cells in fluidic environments are sensitive to flow frequency. J Cell Physiol. 2005;204:329–35.

    PubMed  Google Scholar 

  13. Zhang X, Naert I, Van Schoonhoven D, Duyck J. Direct high-frequency stimulation of peri-implant rabbit bone: a pilot study. Clin Implant Dent Relat Res. 2010. doi:10.1111/j.1708-8208.2010.00298x.

    PubMed  Google Scholar 

  14. Ogawa T, Possemiers T, Zhang X, Naert I, Chaudhari A, Sasaki K, Duyck J. Influence of whole-body vibration time on peri-implant bone healing: a histomorphometrical animal study. J Clin Periodontol. 2011;38:180–5.

    PubMed  Google Scholar 

  15. Bannister SR, Lohmann CH, Liu Y, Sylvia VL, Cochran DL, Dean DD, Boyan BD, Schwartz Z. Shear force modulates osteoblast response to surface roughness. J Biomed Mater Res. 2002;60:167–74.

    PubMed  Google Scholar 

  16. Frost HM. A determinant of bone architecture. The minimum effective strain. Clin Orthop Relat Res. 1983:286–92.

  17. Hoshaw SJ, Brunski BJ, Cochran GVB. Mechanical loading of Brånemark implants affects interfacial bone modeling and remodeling. Int J Oral Maxillofac Implants. 1994;9:345–60.

    Google Scholar 

  18. Vandamme K, Naert I, Geris L, Vander Sloten J, Puers R, Duyck J. The effect of micro-motion on the tissue response around immediately loaded roughened titanium implants in the rabbit. Eur J Oral Sci. 2007;115:21–9.

    PubMed  Google Scholar 

  19. De Smet E, Jaecques SV, Wevers M, Jansen JA, Jacobs R, Sloten JV, Naert IE. Effect of controlled early implant loading on bone healing and bone mass in guinea pigs, as assessed by micro-CT and histology. Eur J Oral Sci. 2006;114:232–42.

    PubMed  Google Scholar 

  20. Isidor F. Histological evaluation of peri-implant bone at implants subjected to occlusal overload or plaque accumulation. Clin Oral Implants Res. 1997;8:1–9.

    PubMed  Google Scholar 

  21. Isidor F. Mobility assessment with the periotest system in relation to histologic findings of oral implants. Int J Oral Maxillofac Implants. 1998;13:377–83.

    PubMed  Google Scholar 

  22. Simmons CA, Meguid SA, Pilliar RM. Differences in osseointegration rate due to implant surface geometry can be explained by local tissue strains. J Orthop Res. 2001;19:187–94.

    PubMed  Google Scholar 

  23. Wiskott HW, Belser UC. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res. 1999;10:429–44.

    PubMed  Google Scholar 

  24. Boyan BD, Sylvia VL, Liu Y, Sagun R, Cochran DL, Lohmann CH, Dean DD, Schwartz Z. Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2. Biomaterials. 1999;20:2305–10.

    PubMed  Google Scholar 

  25. Das K, Bose S, Bandyopadhyay A. TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell-materials interaction. J Biomed Mater Res A. 2009;90:225–37.

    PubMed  Google Scholar 

  26. Vandamme K, Naert I, Vander Sloten J, Puers R, Duyck J. Effect of implant surface roughness and loading on peri-implant bone formation. Eur J Oral Sci. 2008;79:150–7.

    Google Scholar 

  27. Kawahara H, Aoki H, Koike H, Soeda Y, Kawahara D, Matsuda S. No evidence to indicate topographic dependency on bone formation around cp titanium implants under masticatory loading. J Mater Sci Mater Med. 2006;17:727–34.

    PubMed  Google Scholar 

  28. Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res A. 2004;69:462–8.

    PubMed  Google Scholar 

  29. Turner CH. Three rules for bone adaptation to mechanical stimuli. Bone. 1998;23:399–407.

    PubMed  Google Scholar 

  30. Sato N, Kubo K, Yamada M, Hori N, Suzuki T, Maeda H, Ogawa T. Osteoblast mechanoresponses on Ti with different surface topographies. J Dent Res. 2009;88:812–6.

    PubMed  Google Scholar 

  31. Ingber DE, Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci. 2003;116:1397–408.

    PubMed  Google Scholar 

  32. Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP. A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem. 2003;88:104–12.

    PubMed  Google Scholar 

  33. Weinbaum S, Guo P, You L. A new view of mechanotransduction and strain amplification in cells with microvilli and cell processes. Biorheology. 2001;38:119–42.

    PubMed  Google Scholar 

  34. Lange R, Luthen F, Beck U, Rychly J, Baumann A, Nebe B. Cell-extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol Eng. 2002;19:255–61.

    PubMed  Google Scholar 

  35. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res. 2000;49:155–66.

    PubMed  Google Scholar 

  36. Sela MN, Badihi L, Rosen G, Steinberg D, Kohavi D. Adsorption of human plasma proteins to modified titanium surfaces. Clin Oral Implants Res. 2007;18:630–8.

    PubMed  Google Scholar 

  37. Lanyon LE. Control of bone architecture by functional load bearing. J Bone Miner Res. 1992;7(Suppl 2):S369–75.

    PubMed  Google Scholar 

  38. Medard C, Ribaux C, Chavrier C. A histological investigation on early tissue response to titanium implants in a rat intramedullary model. J Oral Implantol. 2000;26:238–43.

    PubMed  Google Scholar 

  39. Guglielmotti MB, Renou S, Cabrini RL. Evaluation of bone tissue on metallic implants by energy-dispersive X-ray analysis: an experimental study. Implant Dent. 1999;8:303–9.

    PubMed  Google Scholar 

  40. Kajiwara H, Yamaza T, Yoshinari M, Goto T, Iyama S, Atsuta I, Kido MA, Tanaka T. The bisphosphonate pamidronate on the surface of titanium stimulates bone formation around tibial implants in rats. Biomaterials. 2005;26:581–7.

    PubMed  Google Scholar 

  41. Clokie CM, Warshawsky H. Morphologic and radioautographic studies of bone formation in relation to titanium implants using the rat tibia as a model. Int J Oral Maxillofac Implants. 1995;10:155–65.

    PubMed  Google Scholar 

  42. Clokie CM, Warshawsky H. Development of a rat tibia model for morphological studies of the interface between bone and a titanium implant. Compendium 1995;16:56, 58, 60 passim (quiz 8).

  43. Duyck J, Cooman MD, Puers R, Van Oosterwyck H, Sloten JV, Naert I. A repeated sampling bone chamber methodology for the evaluation of tissue differentiation and bone adaptation around titanium implants under controlled mechanical conditions. J Biomech. 2004;37:1819–22.

    PubMed  Google Scholar 

  44. Duyck J, Slaets E, Sasaguri K, Vandamme K, Naert I. Effect of intermittent loading and surface roughness on peri-implant bone formation in a bone chamber model. J Clin Periodontol. 2007;34:998–1006.

    PubMed  Google Scholar 

  45. Melsen B, Lang NP. Biological reactions of alveolar bone to orthodontic loading of oral implants. Clin Oral Implants Res. 2001;12:144–52.

    PubMed  Google Scholar 

  46. Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants subjected to static load. A study in the dog (I). Clin Oral Implants Res. 2001;12:1–8.

    PubMed  Google Scholar 

  47. Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clin Oral Implants Res. 2001;12:196–201.

    PubMed  Google Scholar 

  48. Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants subjected to static load of different duration. A study in the dog (III). Clin Oral Implants Res. 2001;12:552–8.

    PubMed  Google Scholar 

  49. Shigemitsu R, Ogawa T, Matsumoto T, Yoda N, Gunji Y, Yamakawa Y, Ikeda K, Sasaki K. Stress distribution in the peri-implant bone with splinted and non-splinted implants by in vivo loading data-based finite element analysis. Odontology. 2012. doi:10.1007/s10266-012-0077-y.

    PubMed  Google Scholar 

  50. Chatzigianni A, Keilig L, Duschner H, Götz H, Eliades T, Bourauel C. Comparative analysis of numerical and experimental data of orthodontic mini-implants. Eur J Orthod. 2011;33:468–75.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (grant no. 21791876) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflict of Interest

None of the authors have any conflicts of interest associated with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoko Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, N., Kuwana, T., Yamamoto, M. et al. Bone response to immediate loading through titanium implants with different surface roughness in rats. Odontology 102, 249–258 (2014). https://doi.org/10.1007/s10266-013-0107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-013-0107-4

Keywords

Navigation