Skip to main content

Advertisement

Log in

CT and MR Image Fusion Scheme in Nonsubsampled Contourlet Transform Domain

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Fusion of CT and MR images allows simultaneous visualization of details of bony anatomy provided by CT image and details of soft tissue anatomy provided by MR image. This helps the radiologist for the precise diagnosis of disease and for more effective interventional treatment procedures. This paper aims at designing an effective CT and MR image fusion method. In the proposed method, first source images are decomposed by using nonsubsampled contourlet transform (NSCT) which is a shift-invariant, multiresolution and multidirection image decomposition transform. Maximum entropy of square of the coefficients with in a local window is used for low-frequency sub-band coefficient selection. Maximum weighted sum-modified Laplacian is used for high-frequency sub-bands coefficient selection. Finally fused image is obtained through inverse NSCT. CT and MR images of different cases have been used to test the proposed method and results are compared with those of the other conventional image fusion methods. Both visual analysis and quantitative evaluation of experimental results shows the superiority of proposed method as compared to other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amdur RJ, Gladstone D, Leopold KA, Harris RD: Prostate seed implant quality assessment using MR and CT image fusion. Int J Radiat Oncol Biol Phys 43:67–72, 1999

    Article  CAS  PubMed  Google Scholar 

  2. Joel Leong F, Siegel AH: Clinical applications of fusion imaging. Appl Radiol(32), 2003

  3. Constantinos SP, Pattichis MS, Mitheli-Tzanakou E: Medical imaging fusion applications: an overview. Proc 35th Asilomar Conf Signals Syst Comput 2:1263–1267, 2001

    Google Scholar 

  4. Nemec SF, Donat MA, Mehrain S, Friedrich K, Krestan C, Matula C, Imhof H, Czerny C: CT–MR image data fusion for computer assisted navigated neurosurgery of temporal bone tumors. Eur J Radiol 62:192–198, 2007

    Article  PubMed  Google Scholar 

  5. Nemec SF, Peloschek P, Schmook MT, Krestan CR, Hauff W, Matula C, Czerny C: CT-MR image data fusion for computer-assisted navigated surgery of orbital tumors. Eur J Radiol 73:224–229, 2010

    Article  PubMed  Google Scholar 

  6. Toet A: Image fusion by a ratio of low-pass pyramid. Pattern Recognit Lett 9(A Toet):245–253, 1989

    Article  Google Scholar 

  7. Baum KG, Schmidt E, Rafferty K, Krol A, María H: Evaluation of novel genetic algorithm generated schemes for positron emission tomography (PET)/magnetic resonance imaging (MRI) image fusion. J Digit Imaging 24:1031–1043, 2011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Toet A, van Ruyven LJ, Valeton JM: Merging thermal and visual images by a contrast pyramid. Opt Eng 28:789–792, 1989

    Article  Google Scholar 

  9. Li H, Manjunath BS, Mitra SK: Multisensor image fusion using the wavelet transform. Graph Models 57:235–245, 1995

    Article  Google Scholar 

  10. Selesnick IW, Baraniuk RG, Kingsbury NG: The dual-tree complex wavelet transform. IEEE Signal Process Mag 22:123–151, 2005

    Article  Google Scholar 

  11. Zhenfeng S, Jun L, Qimin C: Fusion of infrared and visible images based on focus measure operators in the curvelet domain. Appl Opt 51:1910–1921, 2012

    Article  PubMed  Google Scholar 

  12. Candès E, Demanet L, Donoho D, Ying LX: Fast discrete curvelet transforms. Multiscale Model Simul 5:861–899, 2006

    Article  Google Scholar 

  13. Ali FE, El-Dokany IM, Saad AA, Abd El-Samie FE: Curvelet fusion of mr and ct images. Prog Electromagn Res C 3:215–224, 2008

    Article  Google Scholar 

  14. Xu J, Yang L, Wu D: Ripplet: a new transform for image processing. J Vis Commun Image Represent 21:627–639, 2010

    Article  Google Scholar 

  15. Das S, Chowdhury M, Kundu MK: Medical image fusion based on ripplet transform type-I. Prog Electromagn Res B Pier B 30:355–370, 2011

    Google Scholar 

  16. Qu X, Yan J, Xie G, Zhu Z, Chen B: A novel image fusion algorithm based on bandelet transform. Chin Opt Lett 5:569–572, 2007

    Google Scholar 

  17. Miao Q, Shi C, Xu P, Yang M, Shi Y: A novel algorithm of image fusion using shearlets. Opt Commun 284:1540–1547, 2004

    Article  Google Scholar 

  18. Do MN, Vetterli M: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 12:2091–2106, 2005

    Article  Google Scholar 

  19. Yang L, Guo BL, Ni W: Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing 72:203–211, 2008

    Article  Google Scholar 

  20. Cunha AL, Zhou JP, Do MN: The non-subsampled contourlet transform: theory, design and applications. IEEE Trans Image Process 15:3089–3101, 2006

    Article  PubMed  Google Scholar 

  21. Li S, Yang B, Hu J: Performance comparison of different multiresolution transforms for image fusion. Inf Fusion 12:74–84, 2011

    Article  Google Scholar 

  22. Lu H, Zhang L, Serikawa S: Maximum local energy: an effective approach for multisensor image fusion in beyond wavelet transform domain. Comput Math Appl 64:996–1003, 2012

    Article  Google Scholar 

  23. Pajares G, de la Cruz JM: A wavelet-based image fusion tutorial. Pattern Recognit 37:1855–1872, 2004

    Article  Google Scholar 

  24. Piella G: A general framework for multiresolution image fusion: from pixels to regions. Inf Fusion 4:259–280, 2003

    Article  Google Scholar 

  25. Yang Y, Park DS, Huang S, Rao N: Medical image fusion via an effectivewavelet-based approach. EURASIP J Adv Signal Process 2010:44, 2010

    Google Scholar 

  26. Lewis JJ, O’Callaghan RJ, Nikolov SG, Bull DR, Canagarajah N: Pixel and region-based image fusion with complex wavelets. Inf Fusion 8:119–130, 2007

    Article  Google Scholar 

  27. Li H, Chai Y, Li Z: Multi-focus image fusion based on nonsubsampled contourlet transform and focused regions detection. Optik 124:40–51, 2013

    Article  Google Scholar 

  28. Chai Y, Li H, Zhang X: Multifocus image fusion based on features contrast of multiscale products in nonsubsampled contourlet transform domain. Optik 123:569–581, 2012

    Article  Google Scholar 

  29. Zheng Y, Essock EA, Hansen BC, Haun AM: A new metric based on extended spatial frequency and its application to DWT based fusion algorithms. Inf Fusion 8:177–192, 2007

    Article  Google Scholar 

  30. Qu G, Zhang D, Yan P: Information measure for performance of image fusion. Electron Lett 38:313–315, 2002

    Article  Google Scholar 

  31. Petrović V, Xydeas C: Objective image fusion performance measure. Electron Lett 36:308–309, 2000

    Article  Google Scholar 

  32. Piella G, Heijmans H: A new quality metric for image fusion. ICIP 3:173–176, 2003

    Google Scholar 

  33. Wang Z, Bovik AC: A universal image quality index. IEEE Signal Process Lett 9:81–84, 2002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to sincerely thank the anonymous reviewers for their useful comments which helped to improve the paper. Also, the authors would like to thank http://www.imagefusion.org/ and http://www.med.harvard.edu/aanlib/home.html for providing source medical images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma Ganasala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ganasala, P., Kumar, V. CT and MR Image Fusion Scheme in Nonsubsampled Contourlet Transform Domain. J Digit Imaging 27, 407–418 (2014). https://doi.org/10.1007/s10278-013-9664-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-013-9664-x

Keywords

Navigation