Skip to main content

Advertisement

Log in

A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Meniscal tear is one of the prevalent knee disorders among young athletes and the aging population, and requires correct diagnosis and surgical intervention, if necessary. Not only the errors followed by human intervention but also the obstacles of manual meniscal tear detection highlight the need for automatic detection techniques. This paper presents a type-2 fuzzy expert system for meniscal tear diagnosis using PD magnetic resonance images (MRI). The scheme of the proposed type-2 fuzzy image processing model is composed of three distinct modules: Pre-processing, Segmentation, and Classification. λ-nhancement algorithm is used to perform the pre-processing step. For the segmentation step, first, Interval Type-2 Fuzzy C-Means (IT2FCM) is applied to the images, outputs of which are then employed by Interval Type-2 Possibilistic C-Means (IT2PCM) to perform post-processes. Second stage concludes with re-estimation of “η” value to enhance IT2PCM. Finally, a Perceptron neural network with two hidden layers is used for Classification stage. The results of the proposed type-2 expert system have been compared with a well-known segmentation algorithm, approving the superiority of the proposed system in meniscal tear recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. De Smet AA, Norris MA, Yandow DR: MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. American Journal of Roentgenology 161:101–107, 1993

    Article  PubMed  Google Scholar 

  2. Bowers ME, Tung GA, Fleming BC, Crisco JJ, Rey J: Quantification of meniscal volume by segmentation of 3T magnetic resonance images. Journal of Biomechanics 40(12):2811–2815, 2007

    Article  PubMed  PubMed Central  Google Scholar 

  3. FazelZarandi MH, Zarinbal M, Izadi M: Systematic image processing for diagnosing brain tumors: a type-2 fuzzy expert system approach. Applied Soft Computing 11(1):285–294, 2009

    Article  Google Scholar 

  4. Kostopoulos S, Sidiropoulos K, Glotsos D, Athanasiadis E, Konstantina B, Lavdas E, Oikonomou G, Fezoulidis IV, Vlychou M, Hantes M, Cavouras D: A systematic approach to magnetic resonance imaging evaluation of epiphyseal lesions. Magnetic Resonance Imaging 31(3):418–431, 2013

    Article  Google Scholar 

  5. J.M. Mendel, R.I. John, Type-2 fuzzy sets made simple. IEEE Transactions on fuzzy systems 2002 10 117–127.

  6. J.M. Mendel, R.I. John, F. Liu, Interval type-2 fuzzy logic systems made simple. IEEE Transactions on fuzzy systems 2006 14 808–821.

  7. Hough Jr, AJ, Webber RJ: Pathology of the meniscus. Clinical Orthopedics and Related Research 252:32–40, 1990

    Google Scholar 

  8. Houston Methodist Orthopedics & Sports Medicine. http://www.methodistorthopedics.com

  9. Scott, W.N., Surgery of the knee. Elsevier Inc., 2006.

  10. Fox MG: MR imaging of the meniscus: review, current trends, and clinical implications. Magnetic Resonance Imaging Clinics of North America 15(1):103–123, 2007

    Article  PubMed  Google Scholar 

  11. McCarty EcFau—Marx, R.G., T.L. Marx RgFau—Wickiewicz, and T.L. Wickiewicz, Meniscal tears in the athlete. Operative and nonoperative management, 2000. 28(8): p. 1308–1316.

  12. Helms CA: The meniscus: recent advances in MR imaging of the knee. American Journal of Roentgenology 179(5):1115–1122, 2002

    Article  PubMed  Google Scholar 

  13. Ramakrishna B, et al: An automatic computer-aided detection system for meniscal tears on magnetic resonance images. Medical Imaging, IEEE Transactions on 28(8):1308–1316, 2009

    Article  Google Scholar 

  14. C. Köse et al. An automatic diagnosis method for the knee meniscus tears in MR images. Expert systems with applications,2009. 36(2): p. 1208 – 1216.

  15. Pohle R., & Toennies, K. Segmentation of medical images using adaptive region growing. Medical imaging,2001. SPIE 4322.

  16. Wright DH, De Smet AA, Norris M: Bucket-handle tears of the medial and lateral menisci of the knee: value of MR imaging in detecting displaced fragments. American Journal of Roentgenology 165(3):621–625, 1995

    Article  CAS  PubMed  Google Scholar 

  17. Ja-Chih F, Lin C-C, Wang C-N, Yang-Kun O: Computer-aided diagnosis for knee meniscus tears in magnetic resonance imaging. Journal of Industrial and Production Engineering 30(2):67–77, 2013

    Article  Google Scholar 

  18. Hata Y, Kobashi S, Tokimoto S, Ishikawa M, Ishikawa H: Computer-aided diagnosis system of meniscal tears with T1- and T2-weighted MR images based on fuzzy inference. Lecture Notes Computer Science 2206:55–58, 2001

    Article  Google Scholar 

  19. J. Waterton, S. Solloway, J. Foster, M. keen, S. Gandy, B. Middleton, R. Maciewicz, I. Watt, P. Dieppe, and C. Taylor. Diurnal variation in the femoral articular cartilage of the knee in young adult humans. Magnetic Resonance Medicine,2000. 43: p. 126–132.

  20. Fripp J, Bourgeat P, Crozier S, Ourselin S: Segmentation of the bones in MRIs of the knee using phase, magnitude, and shape information. Academic Radiology 14(10):1201–1208, 2007

    Article  PubMed  Google Scholar 

  21. Tang J, Millington S, Acton ST, Crandall J, Hurwitz S: Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes. IEEE Transactions Biomedical Engineering 53(5):896–907, 2006

    Article  Google Scholar 

  22. Stammberger T, Eckstein F, Englmeier K, Reiser M: Determination of 3D cartilage thickness data from MR imaging: computational method and reproducibility in the living. Magnetic Resonance medicine 41:529–536, 1999

    Article  CAS  Google Scholar 

  23. Li K, Millington S, Wu X, Chen DZ, Sonka M: Simultaneous segmentation of multiple closed surfaces using optimal graph searching. Proceedings International Conference on Information Processing in Medical Imaging 3565:406–417, 2005

    Article  Google Scholar 

  24. Hu L, Cheng HD, Zhang M: A high performance edge detector based on fuzzy inference rules. Information sciences 177(21):4768–4784, 2007

    Article  Google Scholar 

  25. L.A. Zadeh. The concept of a linguistic variable and its applications to approximate reasoning. Information sciences,1975. 8: p. 199–249.

  26. P. Melin, O. Castillo. Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing. Springer-Verlag,2005.

  27. O. Castillo, P. Melin. Type-2 Fuzzy Logic: Theory and Applications. Springer-Verlag,2008.

  28. FazelZarandi MH, Turksen IB, TorabiKasbi O: Type-2 fuzzy modeling for desulphurization of steel process. Expert Systems with Applications 32:157–171, 2007

    Article  Google Scholar 

  29. Turksen IB: Type-2 representation and reasoning for CWW. Fuzzy Sets and Systems 127:17–36, 2002

    Article  Google Scholar 

  30. V. Kuperman. Magnetic Resonance Imaging: Physical Principles and Applications. Academic Press,2000.

  31. M.H. FazelZarandi, M. Zarinbal, I. B.Turksen. Type-2 Possibilistic C-Means Clustering. IFSA-USEFLAT,2009. p. 30–35.

  32. Tizhoosh, H.R., G. Krell, and B. Michaelis. λ-Enhancement: contrast adaptation based on optimization of image fuzziness. IEEE International Conference on Fuzzy Systems, 1998. 2: p. 1548–1553.

  33. Kwon SH: Cluster validity index for fuzzy clustering. Electronics Letters 34(22):2176–2177, 1998

    Article  Google Scholar 

  34. FazelZarandi MH, Rezaee B, Turksen IB, Neshat E: A type-2 fuzzy rule based expert system model for stock price analysis. Expert Systems with Applications 36:139–154, 2009

    Article  Google Scholar 

  35. Young Sik C, Krishnapuram R: A robust approach to image enhancement based on fuzzy logic. Image Processing, IEEE Transactions on 6(6):808–825, 1997

    Article  Google Scholar 

  36. Tizhoosh HR: Image thresholding using type II fuzzy sets. Pattern Recognition 38(12):2363–2372, 2005

    Article  Google Scholar 

  37. Tizhoosh, H.R., Adaptive λ-enhancement: type-1 versus type-2 fuzzy implementation. IEEE Symposium on Computational Intelligence in Image Processing, CIIP—Proceedings, 2009.

  38. J.V. Oliveira, W. Pedrycz. Advances in Fuzzy Clustering and its Applications. John Wiley and Sons Ltd., 2007.

  39. Hwang, C. and F.C.H. Rhee, Uncertain fuzzy clustering: interval type-2 fuzzy approach to C-means. IEEE Transactions on Fuzzy Systems, 2007. 15(1): p. 107–120.

  40. Rhee, F.C.H. and C. Hwang. A type-2 fuzzy C-means clustering algorithm. Annual Conference of the North American Fuzzy Information Processing Society—NAFIPS, 2001.

  41. Krishnapuram, R. and J.M. Keller, Possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 1993. 1(2): p. 98–110.

  42. Zadeh, L.A., Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1999. 100 Supplement 1(0) p. 9–34.

  43. Min, J.H., E.A. Shim, and F.C.H. Rhee. An interval type-2 fuzzy PCM algorithm for pattern recognition. IEEE International Conference on Fuzzy Systems. 2009. p. 480–483.

  44. M.H. FazelZarandi, M.R. Faraji, and M. Karbasian, An exponential cluster validity index for fuzzy clustering with crisp and fuzzy data. Scientia Iranica, 2010. 17(2): p. 95–110.

  45. Karnik, N.N. and J.M. Mendel. Introduction to type-2 fuzzy logic systems. IEEE International Conference on Fuzzy Systems, 1998. p. 643–658.

  46. Karnik, N.N. and J.M. Mendel, Centroid of a type-2 fuzzy set. Information Sciences, 2001. 132: p. 195–220.

  47. Tizhoosh HR: Type-II fuzzy image segmentation; fuzzy sets and their extensions: representation, aggregation and models. Studies in Fuzziness and Soft Computing 220:607–619, 2008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Fazel Zarandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarandi, M.H.F., Khadangi, A., Karimi, F. et al. A Computer-Aided Type-II Fuzzy Image Processing for Diagnosis of Meniscus Tear. J Digit Imaging 29, 677–695 (2016). https://doi.org/10.1007/s10278-016-9884-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-016-9884-y

Keywords

Navigation