Skip to main content
Log in

Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Accurate and fully automatic brain tumor grading from volumetric 3D magnetic resonance imaging (MRI) is an essential procedure in the field of medical imaging analysis for full assistance of neuroradiology during clinical diagnosis. We propose, in this paper, an efficient and fully automatic deep multi-scale three-dimensional convolutional neural network (3D CNN) architecture for glioma brain tumor classification into low-grade gliomas (LGG) and high-grade gliomas (HGG) using the whole volumetric T1-Gado MRI sequence. Based on a 3D convolutional layer and a deep network, via small kernels, the proposed architecture has the potential to merge both the local and global contextual information with reduced weights. To overcome the data heterogeneity, we proposed a preprocessing technique based on intensity normalization and adaptive contrast enhancement of MRI data. Furthermore, for an effective training of such a deep 3D network, we used a data augmentation technique. The paper studied the impact of the proposed preprocessing and data augmentation on classification accuracy.

Quantitative evaluations, over the well-known benchmark (Brats-2018), attest that the proposed architecture generates the most discriminative feature map to distinguish between LG and HG gliomas compared with 2D CNN variant. The proposed approach offers promising results outperforming the recently supervised and unsupervised state-of-the-art approaches by achieving an overall accuracy of 96.49% using the validation dataset. The obtained experimental results confirm that adequate MRI’s preprocessing and data augmentation could lead to an accurate classification when exploiting CNN-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. L. Goodenberger, R. B. Jenkins, Genetics of adult glioma, Cancer genetics 205 (12) (2012) 613-621.

  2. D. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W. Cavenee, H. Ohgaki, O. Wiestler, P. Kleihues, D. Ellison, The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Actaneuropathol (berl). 2016; 131: 803-20.

    Article  Google Scholar 

  3. F. B. Mesfin, M. A. Al-Dhahir, Cancer, brain, gliomas, in: StatPearls [Internet], StatPearls Publishing, 2018.

  4. H. Mzoughi, I. Njeh, M. B. Slima, A. B. Hamida, Histogram equalization-based techniques for contrast enhancement of MRI brain glioma tumor images: comparative study, in: 2018 4th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), IEEE, 2018,pp. 1. 6.510

  5. X. Bi, J. G. Liu, Y. S. Cao, Classification of low-grade and high-grade glioma using multiparametric radiomics model, in: 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), IEEE, 2019, pp. 574-577.

  6. N. Marshkole, B. K. Singh, A. Thoke, Texture and shape based classification of brain tumors using back-propagation algorithm, International Journal of Computer Science and Information Technologies 2 (5) (2011) 2340-2342.

  7. S. S. Nazeer, A. Saraswathy, A. K. Gupta, R. S. Jayasree, Fluorescence spectroscopy to discriminate neoplastic human brain lesions: a study using the spectral intensity ratio and multivariate linear discriminant analysis,Laser Physics 24 (2) (2014) 025602.

  8. E. I. Zacharaki, S. Wang, S. Chawla, D. SooYoo, R. Wolf, E. R. Melhem, C. Davatzikos, Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magnetic Resonance in Medicine: An Official Journal of the International Society for MagneticResonance in Medicine 62 (6) (2009) 1609-1618.

  9. V. Alex, Mohammed Safwan KP, S. S. Chennamsetty, G. Krishnamurthi, Generative adversarial networks for brain lesion detection, in: Medical Imaging 2017:Image Processing, Vol. 10133, International Society for Optics and Photonics, 2017, p. 101330G.

  10. G. Latif, M. M. Butt, A. H. Khan, O. Butt, D. A. Iskandar, Multiclass brain glioma tumor classification using block-based 3d wavelet features of MRI mages, in: 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE), IEEE, 2017, pp. 333-337.

  11. S. M. Reza, K. M. Iftekharuddin, Glioma grading using cell nuclei morphologic features in digital pathology images, in: Medical Imaging 2016:Computer-Aided Diagnosis, Vol. 9785, International Society for Optics and Photonics, 2016, p. 97852U.20

  12. B. Chandra, K. N. Babu, Classification of gene expression data using spiking wavelet radial basis neural network, Expert systems with applications 41 (4) (2014) 1326-1330.

    Article  Google Scholar 

  13. M. Zhou, B. Chaudhury, L. O. Hall, D. B. Goldgof, R. J. Gillies, R. A.525 Gatenby, Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction, Journal of Magnetic Resonance Imaging 46 (1) (2017) 115-123.

    Article  PubMed  Google Scholar 

  14. V. Wasule, P. Sonar, Classification of brain MRI using SVM and KNN classifier,in: 2017 Third International Conference on Sensing, Signal Processing andSecurity (ICSSS), IEEE, 2017, pp. 218-223.

  15. H. Mohsen, E. El-Dahshan, E. El-Horbaty, A. Salem, Brain tumor type classification based on support vector machine in magnetic resonance images, Annals Of Dunarea De Jos" University Of Galati, Mathematics,Physics, Theoretical mechanics, Fascicle II, Year IX (XL) (1).

  16. J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal, C. K. Ahuja, Multi- class brain tumor classification using GA-SVM, in: 2011 Developments inE-systems Engineering, IEEE, 2011, pp. 182-187.

  17. Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, B. J. Erickson, Deep learning for brain MRI segmentation: state of the art and future directions,Journal of digital imaging 30 (4) (2017) 449-459.

    Article  PubMed  PubMed Central  Google Scholar 

  18. H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, A.-B. M. Salem, Classification using deep learning neural networks for brain tumors, Future Computing and Informatics Journal 3 (1) (2018) 68-71.

  19. J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, W. Xu, CNN-RNN: A unified framework for multi-label image classification, in: Proceedings ofthe IEEE conference on computer vision and pattern recognition, 2016, pp.2285-2294.

  20. Z. Zhan, J.-F. Cai, D. Guo, Y. Liu, Z. Chen, X. Qu, Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction, IEEETransactions on Biomedical Engineering 63 (9) (2015) 1850-1861.

    Article  Google Scholar 

  21. S. Pereira, A. Pinto, V. Alves, C. A. Silva, Brain tumor segmentation using convolutional neural networks in MRI images, IEEE transactions on medical imaging 35 (5) (2016) 1240-1251.

    Article  PubMed  Google Scholar 

  22. I. Shahzadi, T. B. Tang, F. Meriadeau, A. Quyyum, CNN-LSTM: Cascadedframework for brain tumour classification, in: 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), IEEE, 2018, pp.633-637.

  23. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556.

  24. H. Palangi, L. Deng, Y. Shen, J. Gao, X. He, J. Chen, X. Song, R. Ward,Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval, IEEE/ACM Transactions onAudio, Speech and Language Processing (TASLP) 24 (4) (2016) 694-707.

    Google Scholar 

  25. S. Deepak, P. Ameer, Brain tumor classification using deep CNN features via transfer learning, Computers in biology and medicine 111 (2019) 103345.

    Article  CAS  PubMed  Google Scholar 

  26. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.

  27. A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in neural informationprocessing systems, 2012, pp. 1097-1105.

  28. H. Chen, Q. Dou, L. Yu, J. Qin, P.-A.Heng, Voxresnet: Deep voxelwise residual networks for brain segmentation from 3D MR images, NeuroImage 170 (2018) 446-455.

  29. F. Ye, J. Pu, J. Wang, Y. Li and H. Zha, “Glioma grading based on 3D multimodal convolutional neural network and privileged learning,” 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, MO, 2017, pp. 759-763.

  30. H. Mzoughi, I. Njeh, M. B. Slima, A. B. Hamida, C. Mhiri, K. B. Mahfoudh,Denoising and contrast-enhancement approach of magnetic resonance imaging glioblastoma brain tumors, Journal of Medical Imaging 6 (4) (2019) 044002.

    Article  PubMed  Google Scholar 

  31. Mohan, J., Krishnaveni, V., Guo, Yanhui et al. A survey on the magnetic resonance image denoising methods. Biomedical Signal Processing and Control, 2014, vol. 9, p. 56-69

    Article  Google Scholar 

  32. S. Amutha, R. D. Babu, R. Shankar, H. N. Kumar, MRI denoising and enhancement based on optimized single-stage principle component analysis, International Journal of Advances in Engineering & Technology 5 (2) (2013) 224.

    Google Scholar 

  33. S. M. Pizer, R. E. Johnston, J. P. Ericksen, B. C. Yankaskas, K. E. Muller,Contrast-limited adaptive histogram equalization: speed and effectiveness ,in: Proceedings of the First Conference on Visualization in Biomedical Computing, IEEE, 1990, pp. 337-345.

  34. M. F. Stollenga, W. Byeon, M. Liwicki, J. Schmidhuber, Parallel multi-dimensional LSTM, with application to fast biomedical volumetric image segmentation, in: Advances in neural information processing systems, 2015,pp. 2998-3006.

  35. Chen, Wei, et al. “Computer-aided grading of gliomas combining automatic segmentation and radiomics.” International journal of biomedical imaging 2018 (2018).

  36. Parsania, Pankaj S., and Paresh V. Virparia. “A comparative analysis of image interpolation algorithms.” International Journal of Advanced Research in Computer and Communication Engineering 5.1 (2016): 29-34.

    Article  Google Scholar 

  37. L. Perez, J. Wang, The effectiveness of data augmentation in image classification using deep learning, arXiv preprint arXiv:1712.04621.

  38. M. Sajjad, S. Khan, K. Muhammad, W. Wu, A. Ullah, S. W. Baik, Multi-grade brain tumor classification using deep CNN with extensive data augmentation, Journal of computational science 30 (2019) 174-182.

  39. Zhang, Liyuan, Huamin Yang, and Zhengang Jiang. "Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with dynamic GAN." Biomedical engineering online 17.1 (2018): 181.

    Article  PubMed  PubMed Central  Google Scholar 

  40. K. Kamnitsas, C. Ledig, V. F. Newcombe, J. P. Simpson, A. D. Kane,D. K. Menon, D. Rueckert, B. Glocker, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Medical imageanalysis 36 (2017) 61-78.

    Google Scholar 

  41. J. Nagi, F. Ducatelle, G. A. Di Caro, D. Cire_san, U. Meier, A. Giusti,F. Nagi, J. Schmidhuber, L. M. Gambardella, Max-pooling convolutional neural networks for vision-based hand gesture recognition, in: 2011 IEEEInternational Conference on Signal and Image Processing Applications (IC-SIPA), IEEE, 2011, pp. 342-347.

  42. Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, S. Belongie, Kernel pooling for convolutional neural networks, in: Proceedings of the IEEE conference oncomputer vision and pattern recognition, 2017, pp. 2921-2930.

  43. M. D. Zeiler, R. Fergus, Stochastic pooling for regularization of deep convolutional neural networks, arXiv preprint arXiv:1301.3557.

  44. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, R. R. Salakhut-dinov, Improving neural networks by preventing co-adaptation of feature detectors, arXiv preprint arXiv:1207.0580.

  45. T. Kurbiel, S. Khaleghian, Training of deep neural networks based on distance measures using RMSProp, arXiv preprint arXiv:1708.01911.

  46. B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al., The multimodal brain tumor image segmentation benchmark (brats), IEEE transactions onmedical imaging 34 (10) (2014) 1993-2024.

    Article  Google Scholar 

  47. M. Shah, Y. Xiao, N. Subbanna, S. Francis, D. L. Arnold, D. L. Collins,T. Arbel, Evaluating intensity normalization on MRIs of human brain with multiple sclerosis, Medical image analysis 15 (2) (2011) 267-282.

  48. H.-h. Cho, H. Park, Classification of low-grade and high-grade glioma using multi-modal image radiomics features, in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC), IEEE, 2017, pp. 3081-3084.

  49. H.-h. Cho, S.-H.Lee, J. Kim, H. Park, Classification of the glioma grading using radiomics analysis, Peer J 6 (2018) e5982.

    Article  PubMed  Google Scholar 

  50. C. Ge, I. Y.-H. Gu, A. S. Jakola, J. Yang, Deep learning and multi-sensor fusion for glioma classification using multistream 2D convolutional networks,in: 2018 40th Annual International Conference of the IEEE Engineering inMedicine and Biology Society (EMBC), IEEE, 2018, pp. 5894-5897.

  51. Y. Pan, W. Huang, Z. Lin, W. Zhu, J. Zhou, J.Wong, Z. Ding, Brain tumor grading based on neural networks and convolutional neural networks, in:2015 37th Annual International Conference of the IEEE Engineering inMedicine and Biology Society (EMBC), IEEE, 2015, pp. 699-702.

Download references

Acknowledgments

The authors would to thank professors and doctors “Chokri Mhiri” and “Kheireddine Ben Mahfoudh” from the University Hospital Habib Bourguiba for their cooperation to achieve this work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba Mzoughi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mzoughi, H., Njeh, I., Wali, A. et al. Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification. J Digit Imaging 33, 903–915 (2020). https://doi.org/10.1007/s10278-020-00347-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-020-00347-9

Keywords

Navigation