Skip to main content
Log in

A note on frame transformations with applications to geodetic datums

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

An Erratum to this article was published on 25 July 2003

Abstract

Rigorous equations in compact symbolic matrix notation are introduced to transform coordinates and velocities between ITRF frames and modern GPS-based geocentric geodetic datums. The theory is general but, after neglecting higher than second-order terms, it is shown that the equations revert to the formulation currently applied in most major continental datums. We discuss several examples: the North American Datum of 1983 (NAD83), the European Terrestrial Reference System of 1989 (ETRS89), the Geodetic Datum of Australia of 1994 (GDA94), and the South American Geocentric Reference System (SIRGAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):ETG2/1–19

    Google Scholar 

  • Beavan J, Tregoning P, Bevis M, Kato T, Meertens C (2002) The motion of the Pacific plate and implications for plate boundary deformation. J. Geophys Res 107(B10):ETG19/1–15

    Google Scholar 

  • Boucher C, Altamimi Z (2000) Transformation parameters and their rates from ITRF 2000 to previous frames (ftp://lareg.ensg.ign.fr/pub/itrf/ITRF.TP)

  • Boucher C, Altamimi Z (2001) Memo: specifications for reference frame fixing in the analysis of a EUREF GPS campaign (fttp://lareg.ensg.ign.fr/EUREF/memo.pdf)

  • Boucher C, Altamimi Z, Sillard P (1999) The 1997 International Terrestrial Reference Frame (ITRF97). IERS Tech Note 27, Central Bureau IERS, Observatoire de Paris, Paris

  • Craymer M, Ferland R, Snay RA (2000) Realization and unification of NAD 83 in Canada and the U.S. via the ITRF. In: Rumel R, Drewes H, Bosch W, Hornik H (eds) Towards an Integrated Global Geodetic Observing System (IGGOS). IAG Sect II Symp, 5–9 October 1998, Munich. International Association of Geodesy Symposia, vol 120. Springer, Berlin Heidelberg New York, pp 118–121

  • Featherstone WE (1996) An updated explanation of the Geocentric Datum of Australia (GDA) and its effects upon future mapping. Aust Surv 41:121–130

    Google Scholar 

  • Hernández-Navarro A (1992) La Red Nacional Activa de México. Rev Cartogr 61:141–148

    Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdell, Waltham, MA

  • McCarthy D (ed) (1996) IERS Technical Note 21. Observatoire de Paris, Paris

  • Mueller II (1969) Spherical and practical astronomy as applied to geodesy. Ungar, New York

  • Schwarz CR (ed) (1989) North American Datum of 1983. NOAA Prof Pap no 2, US Dept Commerce, Natl Oceanic Atmos Admin

  • Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res 107(B4):ETG11/1–29

    Article  Google Scholar 

  • Sillard P, Altamimi Z, Boucher C (1998) The ITRF96 realization and its associated velocity field. Geophys Res Lett 25:3223–3226

    Article  Google Scholar 

  • Snay RA (1999) Using the HTDP software to transform spatial coordinates across time and between reference frames. Surv Land Information Syst 59:15–25

    Google Scholar 

  • Snay RA, Adams G, Chin M, Frakes S, Soler T, Weston ND (2002) The synergistic CORS program continues to evolve. In: Proc ION GPS 2002, 24–27 September, Portland, OR, pp 2630–2639

  • Soler T (1998) A compendium of transformation formulas useful in GPS work. J Geodesy 72:482–490

    Article  Google Scholar 

  • Soler T, Marshall J (2002) Rigorous transformation of variance-covariance matrices of GPS-derived coordinates and velocities. GPS Solut 6:76–90

    Article  Google Scholar 

  • Soler T, Snay RA (2003) Transforming positions and velocities between ITRF00 and NAD 83. J Surv Eng (in press)

  • Steed J, Lutton G (2000) WGS84 and the geodetic datum of Australia. In: Proc ION GPS 2000, 19–22 September, Salt Lake City, UT, pp 432–437

Download references

Acknowledgments

The help of S.A. Hilla, D.G. Milbert, C.R. Schwarz, and R.A. Snay whose comments significantly improved the contents and readability of the manuscript are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás Soler.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10291-003-0063-5.

Appendix

Appendix

Part A

A counterclockwise active rotation of vectors (body rotation) by an angle \(\dot \Omega \) about a line of direction cosines\(\left\{ {\ell _x } \right\}\) can be written in compact matrix notation as

$$ {\bf{R}}_\ell \left( {\dot \Omega } \right) = \left[ I \right] + \sin \dot \Omega \,\underline {\left[ \ell \right]} + \left( {1 - \cos \dot \Omega } \right)\,\underline {\left[ \ell \right]} ^2 $$
(33)

This equation can be reduced by assuming a differential rotation \(\dot \Omega \), substituting \(\sin \dot \Omega \approx \dot \Omega \), \(\cos \dot \Omega \approx 1\), and taking into consideration Eq. (14). The result is

$$ {\bf{R}}\delta _\ell \left( {\dot \Omega } \right) = \left[ I \right] + \underline {\left[ {\dot \Omega } \right]} $$
(34)

It can be easily proved by simple geometric arguments that an active counterclockwise rotation of vector coordinates is equivalent to a passive clockwise rotation of frames. However, if we assume that all rotations (active and passive) are positive when rotated in the counterclockwise sense, a passive counterclockwise rotation by an angle θ around the three frames i=1,2,3, using the transpose of Eq. (33) we can write:

$$R_i \left( \theta \right) = \left[ I \right] + \sin \theta \,\underline {\left[ {\ell _i } \right]} ^t + \left( {1 - \cos \theta } \right)\,\underline {\left[ {\ell _i } \right]} ^2 $$
(35)

The fact that \(\underline {\left[ {\ell _i } \right]} ^2 \) is a symmetric matrix was taken into consideration to write Eq. (35). The symbols \(\ell _i ;\;\,i = 1,2,3\) correspond to the three direction cosines of the three Cartesian axes, i.e., \(\ell _1 = \left\{ {1\;\;\;0\;\;\;0} \right\}^t \); \(\ell _2 = \left\{ {0\;\;\;1\;\;\;0} \right\}^t \); and \(\ell _3 = \left\{ {0\;\;\;0\;\;\;1} \right\}^t \). For example, if we want to obtain the standard counterclockwise rotation about the first axis denoted as R 1 (θ), it follows from Eq. (35) that

$$R_1 \left( \theta \right) = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right] + \sin \theta \left[ {\matrix{ 0 & 0 & 0 \cr 0 & 0 & 1 \cr 0 & { - 1} & 0 \cr } } \right] + \left( {1 - \cos \theta } \right)\left[ {\matrix{ 0 & 0 & 0 \cr 0 & { - 1} & 0 \cr 0 & 0 & { - 1} \cr } } \right] = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & {\cos \theta } & {\sin \theta } \cr 0 & { - \sin \theta } & {\cos \theta } \cr } } \right]$$
(36)

which reduces to the well-known definitions of counterclockwise rotation around coordinate axes R i (θ), i=1,2,3 prevalent on the geodetic literature (Kaula 1966, p. 13; Mueller 1969, p. 43). The reader should be reminded that the counterclockwise positive sense for rotations and the basic rotation matrices described above are adopted by most scientists, and it is even assumed in the formulation presented in the set of IERS conventions when discussing rotation of frames due to precession, nutation, and polar motion.

Part B

The following partial derivatives based on Eqs. (8) and (10) are rigorous (no high-order terms are neglected). This new set of partial derivatives should replace the original ones previously given in Soler and Marshall (2002) in order to have a consistent set of transformation equations, and accompanying partial derivatives, totally independent of any approximations. In our notation \(\Im \) is associated with the functional relationship of Eq. (8); similarly, \({\cal A}\) is associated with Eq. (10).

$$\left[ {\delta \Re } \right] = \left[ I \right] + \underline {\left[ {\varepsilon \left( {t_k } \right)} \right]} ^t $$
$${{\partial \Im } \mathord{\left/ {\vphantom {{\partial \Im } {\partial \left\{ x \right\}}}} \right. \kern-\nulldelimiterspace} {\partial \left\{ x \right\}}} = \left( {1 + s\left( {t_k } \right)} \right)\left[ {\delta \Re } \right] + \left( {t_D - t_k } \right)\left[\kern-0.15em\left[ {\left( {1 + s\left( {t_k } \right)} \right)\underline {\left[ {\dot \varepsilon } \right]} ^t + \dot s\left[ {\delta \Re } \right]} \right]\kern-0.15em\right] + \left( {t_D - t} \right)^2 \dot s\underline {\left[ {\dot \varepsilon } \right]} ^t = \left[ {\partial x} \right]$$
$${{\partial \Im } \mathord{\left/ {\vphantom {{\partial \Im } {\partial \left\{ {v_x } \right\}}}} \right. \kern-\nulldelimiterspace} {\partial \left\{ {v_x } \right\}}} = \left( {t_D - t} \right)\left[\kern-0.15em\left[ {\left( {1 + s\left( {t_k } \right)} \right)\left[ {\delta \Re } \right] + \left( {t_D - t_k } \right)\left[\kern-0.15em\left[ {\left( {1 + s\left( {t_k } \right)} \right)\underline {\left[ {\dot \varepsilon } \right]} ^t + \dot s\left[ {\delta \Re } \right]} \right]\kern-0.15em\right] + \left( {t_D - t} \right)^2 \dot s\underline {\left[ {\dot \varepsilon } \right]} ^t } \right]\kern-0.15em\right] = \left[ {\partial v_x } \right]$$
$${{\partial \Im } \mathord{\left/ {\vphantom {{\partial \Im } {\partial \left\{ {T_x \left( {t_k } \right)} \right\}}}} \right. \kern-\nulldelimiterspace} {\partial \left\{ {T_x \left( {t_k } \right)} \right\}}} = \left[ I \right]$$
$${{\partial \Im } \mathord{\left/ {\vphantom {{\partial \Im } {\partial \left\{ {\varepsilon \left( {t_k } \right)} \right\}}}} \right. \kern-\nulldelimiterspace} {\partial \left\{ {\varepsilon \left( {t_k } \right)} \right\}}} = \left( {\left( {1 + s\left( {t_k } \right)} \right) + \left( {t_D - t_k } \right)\dot s} \right)\left[\kern-0.15em\left[ {\underline {\left[ x \right]} + \left( {t_D - t} \right)\underline {\left[ {v_x } \right]} } \right]\kern-0.15em\right] = \left[ {\partial \varepsilon } \right]$$
$${{\partial \Im } \mathord{\left/ {\vphantom {{\partial \Im } {\partial s\left( {t_k } \right)}}} \right. \kern-\nulldelimiterspace} {\partial s\left( {t_k } \right)}} = \left[\kern-0.15em\left[ {\left[ {\delta \Re } \right] + \left( {t_D - t_k } \right)\underline {\left[ {\dot \varepsilon } \right]} ^t } \right]\kern-0.15em\right]\left\{ {\left\{ x \right\} + \left( {t_D - t} \right)\left\{ {v_x } \right\}} \right\} = \left\{ {\partial s} \right\}$$
$${{\partial \Im } \mathord{\left/ {\vphantom {{\partial \Im } {\partial \left\{ {\dot T_x } \right\}}}} \right. \kern-\nulldelimiterspace} {\partial \left\{ {\dot T_x } \right\}}} = \left( {t_D - t} \right)\left[ I \right]$$
$${{\partial \Im } \mathord{\left/ {\vphantom {{\partial \Im } {\partial \{ \dot \varepsilon \} }}} \right. \kern-\nulldelimiterspace} {\partial \{ \dot \varepsilon \} }} = \left( {\left( {t_D - t_k } \right)\left( {1 + s\left( {t_k } \right)} \right) + \left( {t_D - t_k } \right)^2 \dot s} \right)\left[\kern-0.15em\left[ {\underline {\left[ x \right]} + \left( {t_D - t} \right)\underline {\left[ {v_x } \right]} } \right]\kern-0.15em\right] = \left[ {\partial \dot \varepsilon } \right]$$
$${{\partial \Im } \mathord{\left/ {\vphantom {{\partial \Im } {\partial \dot s}}} \right. \kern-\nulldelimiterspace} {\partial \dot s}} = \left[\kern-0.15em\left[ {\left( {t_D - t_k } \right)\left[ {\delta \Re } \right] + \left( {t_D - t} \right)^2 \underline {\left[ {\dot \varepsilon } \right]} ^t } \right]\kern-0.15em\right]\left\{ {\left\{ x \right\} + \left( {t_D - t} \right)\left\{ {v_x } \right\}} \right\} = \left\{ {\partial \dot s} \right\}$$

The partials of the functional relationship (10) with respect to the 14 transformation parameters are:

$${{\partial {\cal A}} \mathord{\left/ {\vphantom {{\partial {\cal A}} {\partial \left\{ x \right\}}}} \right. \kern-\nulldelimiterspace} {\partial \left\{ x \right\}}} = {{\partial \left[ {\partial x} \right]} \mathord{\left/ {\vphantom {{\partial \left[ {\partial x} \right]} {\partial t_D }}} \right. \kern-\nulldelimiterspace} {\partial t_D }} = \left( {1 + s\left( {t_k } \right)} \right)\underline {\left[ {\dot \varepsilon } \right]} ^t + \dot s\left[ {\delta \Re } \right] + 2\left( {t_D - t_k } \right)\dot s\underline {\left[ {\dot \varepsilon } \right]} ^t = \left[ {\overline \partial x} \right]$$
$$ \matrix{ {{{\partial {\cal A}} \mathord{\left/ {\vphantom {{\partial {\cal A}} {\partial \left\{ {v_x } \right\}}}} \right. \kern-\nulldelimiterspace} {\partial \left\{ {v_x } \right\}}}} \hfill & { = {{\partial \left[ {\partial v_x } \right]} \mathord{\left/ {\vphantom {{\partial \left[ {\partial v_x } \right]} {\partial t_D }}} \right. \kern-\nulldelimiterspace} {\partial t_D }} = \left( {1 + s\left( {t_k } \right)} \right)\left[ {\delta \Re } \right] + \left( {2t_D - \left( {t_k + t} \right)} \right)\left[\kern-0.15em\left[ {\left( {1 + s\left( {t_k } \right)} \right)\underline {\left[ {\dot \varepsilon } \right]} ^t + \dot s\left[ {\delta \Re } \right]} \right]\kern-0.15em\right]} \hfill \cr {} \hfill & { + \left( {3\left( {t_D^2 + t_k^2 } \right) - 4t_D t_k + 2t\left( {t_k - t_D } \right)} \right)\dot s\underline {\left[ {\dot \varepsilon } \right]} ^t = \left[ {\bar \partial v_x } \right]} \hfill \cr } $$
$$\partial {\cal A}/\partial \left\{ {T_x \left( {t_k } \right)} \right\} = \left[ 0 \right]$$
$$ \partial {\cal A}/\partial \left\{ {\varepsilon \left( {t_k } \right)} \right\} = \partial \left[ {\partial \varepsilon } \right]/\partial t_D = \left( {1 + s\left( {t_k } \right)} \right)\left[ {v_x } \right] + \dot s\underline {\left[ x \right]} + \left( {2t_D - \left( {t_k + t} \right)} \right)\,\underline {\left[ {v_x } \right]} = \left[ {\overline \partial \varepsilon } \right] $$
$$ \partial {\cal A}/\partial s\left( {t_k } \right) = \partial \left\{ {\partial s} \right\}/\partial t_D = \left[ {\delta \Re } \right]\left\{ {v_x } \right\} + \underline {\left[ {\dot \varepsilon } \right]} ^t \left\{ {\left\{ x \right\} + \left( {2t_D - \left( {t_k + t} \right)} \right)\left\{ {v_x } \right\}} \right\}\, = \left\{ {\bar \partial s} \right\} $$
$$ \partial {\cal A}/\partial \left\{ {\dot T_x } \right\} = \left[ I \right] $$
$$\matrix{ {\partial {\cal A}/\partial \left\{ {\dot \varepsilon } \right\} = \partial \left[ {\partial \dot \varepsilon } \right]/\partial t_D } \hfill & { = \left( {1 + s\left( {t_k } \right)} \right)\underline {\left[ x \right]} + \left( {2t_D - \left( {t_k - t} \right)} \right)\,\underline {\left[ {v_x } \right]} } \hfill \cr {} \hfill & { + \dot s2\left( {t_D - t_k } \right)\,\underline {\left[ x \right]} + \left( {3t_D^2 + t_k^2 - 4t_D t_k + 2t\left( {t_k - t_D } \right)} \right)\,\underline {\left[ {v_x } \right]} = \left[ {\bar \partial \dot \varepsilon } \right]} \hfill \cr } $$
$$\matrix{ {\partial {\cal A}/\partial \dot s = \partial \{ \partial \dot s\} /\partial t_D } \hfill & { = \left[ {\delta \Re } \right]\left\{ {\left\{ x \right\} + \left( {2t_D - \left( {t_k + t} \right)} \right)\left\{ {v_x } \right\}} \right\}} \hfill \cr {} \hfill & { + \underline {\left[ {\dot \varepsilon } \right]} ^t \left\{ {2\left( {t_D - t_k } \right)\left\{ x \right\} + \left( {3t_D^2 + t_k^2 - 4t_D t_k + 2t\left( {t_k - t_D } \right)} \right)\left\{ {v_x } \right\}} \right\} = \left\{ {\bar \partial \dot s} \right\}} \hfill \cr } $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soler, T., Marshall, J. A note on frame transformations with applications to geodetic datums. GPS Solutions 7, 23–32 (2003). https://doi.org/10.1007/s10291-003-0044-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-003-0044-8

Keywords

Navigation